References
- Amante, C & Eakins, BW 2009, ‘ETOPO1 1 arc-minute Global Relief Model: Procedures, Data Sources and Analysis’, NOAA Technical Memorandum NESDIS NGDC-24.
- Ando, M, Tu, Y, Kumagai, H, Yamanaka, Y & Lin, CH 2012, ‘Very low frequency earthquakes along the Ryukyu subduction zone’, Geophysical Research Letters, vol. 39.
- Ando, M, Kitamura, A, Tu, Y, Ohashi, Y, Imai, T, Nakamura, M, Ikuta, R, Miyairi, Y, Yokoyama, Y & Shishikura, M 2018, ‘Source of high tsunamis along the southernmost Ryukyu trench inferred from tsunami stratigraphy’, Tectonophysics, vol. 722, pp. 265–276.
- Arai, K, Matsuda, H, Sasaki, K, Machiyama, H, Yamaguchi, T, Inoue, T, Sato, T, Takayanagi, H & Iryu, Y 2016, ‘A newly discovered submerged reef on the Miyako-Sone platform, Ryukyu Island Arc, Northwestern Pacific’, Marine Geology, vol. 373, pp. 49–54.
- Becker, NC 2005, ‘Painting by numbers: A GMT primer for merging swath-mapping sonar data of different types and resolutions’, Computers & Geosciences, vol. 31(8), pp. 1075–1077.
- Charpy, C, Schmitt, T, Biscara, L, Maspataud, A, Avisse, L & Créach, R 2015, ‘Précision et Performance des Méthodes d’Interpolation pour la Réalisation de Modèles Numériques de Terrain Bathymétriques’ [‘Precision and functionality of the interpolation methods for the realization of Digital Bathymetric Terrain Models’] in Colloque merIGéo, 24–26 novembre 2015, Brest, France.
- DeVasto, MA, Czeck, DM & Bhattacharyy, P 2012, ‘Using image analysis and ArcGIS® to improve automatic grain boundary detection and quantify geological images’, Computers & Geosciences, vol. 49, pp. 38–45.
- Doo, WB, Lo, CL, Wu, WN, Lin, JY, Hsu, SK, Huang, YS & Wang, HF 2018, ‘Strength of plate coupling in the southern Ryukyu subduction zone’, Tectonophysics, vol. 723, pp. 223–228.
- Faccenna, C, Holt, AF, Becker, TW, Lallemand, S & Royden, LH 2018, ‘Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system’, Tectonophysics, vol. 746, pp. 229–238.
- Gauger, S, Kuhn, G, Gohl, K, Feigl, T, Lemenkova, P & Hillenbrand, C 2007 ‘Swath-bathymetric mapping’. Reports on Polar and Marine Research, vol. 557, pp. 38–45.
- Gaynanov, AG 1980, Gravimetric studies of the Earth's crust of the oceans, MSU, Moscow.
- GEBCO Committee 2016, General Bathymetric Chart of the Oceans (GEBCO) - from the coast to the deepest trench. Available from: <
https://www.gebco.net/ >. [21 April 2020]. - GEBCO 2010, GEBCO_08 grid, version 20100927, British Oceanographic Data Centre (BODC), Liverpool, UK.
- Gutscher, MA, Klingelhoefer, F, Theunissen, T, Spakman, W, Berthet, T, Wang, TK & Lee, CS 2016, ‘Thermal modeling of the SW Ryukyu forearc (Taiwan): Implications for the seismogenic zone and the age of the subducting Philippine Sea Plate (Huatung Basin)’, Tectonophysics, vol. 692, pp. 131–142.
- Hall, JK 2006, ‘GEBCO Centennial Special Issue—Charting the secret world of the ocean floor: The GEBCO Project 1903–2003’, Marine Geophysical Research, vol. 27, no. 1, pp. 1–5.
- Harris, PT, Macmillan-Lawler, M, Rupp, J & Baker, EK 2014, ‘Geomorphology of the oceans’, Marine Geology, vol. 352, pp. 4–24.
- Heezen, BC 1960, ‘The rift in the ocean floor’, Scientific American, vol. 203, no. 4, pp. 98–110.
- IHO-IOC 2012, GEBCO Gazetteer of Undersea Feature Names. Available from: <
www.gebco.net >. [21 April 2020]. - IOC, IHO & BODC 2003, ‘Centenary Edition of the GEBCO Digital Atlas, Published on CD-ROM on Behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as Part of the General Bathymetric Chart of the Oceans’, British Oceanographic Data Centre, Liverpool, UK.
- Itoh, M, Kawamura, K, Kitahashi, T, Kojima, S, Katagiri, H & Shimanaga, M 2011, ‘Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean’, Deep-Sea Research Part I, vol. 58, pp. 86–97.
- Jones, MT 1994, The GEBCO Digital Atlas, pp. 17–20, NERC News, Swindon, UK.
- Kitahashi, T, Kawamura, K, Kojima, S & Shimanaga, M 2014, ‘Bathymetric patterns of a and b diversity of harpacticoid copepods at the genus level around the Ryukyu Trench, and turnover diversity between trenches around Japan’, Progress in Oceanography, vol. 123, pp. 54–63.
- Klaučo, M, Gregorová, B, Stankov, U, Marković, V & Lemenkova, P 2013, ‘Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area’, Central European Journal of Geosciences, vol. 5(1), pp. 28–42.
- Kodaira, S, Iwasaki, T, Urabe, T, Kanazawa, T, Egloff, F, Makris, J & Shimamura, H 1996, ‘Crustal structure across the middle Ryukyu trench obtained from ocean bottom seismographic data’, Tectonophysics, vol. 263, pp. 39–60.
- Kuhn, G, Hass, C, Kober, M, Petitat, M, Feigl, T, Hillenbrand, CD, Kruger, S, Forwick, M, Gauger, S & Lemenkova, P 2006, ‘The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet’, Expeditions programm Nr. 75 ANT XXIII/4, AWI Germany.
- Kuo, BY, Wang, CC, Lin, SC, Lin, CR, Chen, PC, Jang, JP & Chang, HK 2012, ‘Shear-wave splitting at the edge of the Ryukyu subduction zone’. Earth and Planetary Science Letters, vol. 355–356, pp. 262–270.
- Lemenkova, P 2018, ‘R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation’. Journal of Marine Technology and Environment, vol. 2, pp. 35–42.
- Lemenkova, P 2019a, ‘AWK and GNU octave programming languages integrated with generic mapping tools for geomorphological analysis’, GeoScience Engineering, vol. 65 (4), pp. 1–22.
- Lemenkova, P 2019b, ‘Geomorphological modelling and mapping of the Peru-Chile Trench by GMT’, Polish Cartographical Review, vol. 51(4), pp. 181–194.
- Lemenkova, P 2019c, ‘Automatic data processing for Visualising Yap and Palau Trenches by Generic Mapping Tools’, Cartographic Letters, vol. 27(2), pp. 72–89.
- Lemenkova, P 2019d, ‘An empirical study of R applications for data analysis in Marine Geology’. Marine Science and Technology Bulletin, vol. 8, no. 1, pp. 1–9.
- Lemenkova, P 2019e, ‘Testing linear regressions by StatsModel library of Python for oceanological data interpretation’, Aquatic Sciences and Engineering, vol. 34, pp. 51–60.
- Lemenkova, P 2019f, ‘Deep-Sea trenches of the Pacific Ocean: a comparative analysis of the submarine geomorphology by data modeling using GMT, QGIS, Python and R. Mid-Term PhD Thesis Presentation: Current Research Progress’, Presentation at OUC, College of Marine Geo-sciences, Qingdao, China.
- Lemenkova, P 2019g, ‘Statistical analysis of the Mariana Trench geomorphology using R programming language’, Geodesy and Cartography, vol. 45, no. 2, pp. 57–84.
- Lemenkova, P 2019h, ‘Numerical data modelling and classification in Marine geology by the SPSS statistics’. International Journal of Engineering Technologies, vol. 5, no. 2, pp. 90–99.
- Lemenkova, P 2019i ‘Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean’, Reports on Geodesy and Geoinformatics, vol. 108, pp. 9–22.
- Lemenkova, P 2019j. ‘GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean’. Geographia Technica, vol. 14, no. 2, pp. 39–48.
- Lemenkova, P 2019k, ‘Processing oceanographic data by Python libraries NumPy, SciPy and Pandas’, Aquatic Research, vol. 2, pp. 73–91.
- Litvin, VM 1987, Morphostructure of the ocean floor, Nedra, Leningrad.
- Mayer, LA 2006, ‘Frontiers in seafloor mapping and visualization’, Marine Geophysical Research, vol. 27, pp. 7–17.
- Meyer, D, Riechert, M 2019, ‘Open source QGIS toolkit for the Advanced Research WRF modelling system’, Environmental Modelling & Software, vol. 112, pp. 166–178.
- Milashin, AP 1971 ‘On the differences in the structure of the earth's crust of the seas and oceans’ in Marine Geology and Geophysics, ed. AP Milashin, Nedra, Moscow, pp. 3–16.
- Minami, H & Ohara, Y 2018, ‘Detailed volcanic morphology of Daisan-Miyako Knoll in the southern T Ryukyu Arc’, Marine Geology, vol. 404, pp. 97–110.
- Molina-Navarro, E, Nielsen, A, Trolle, D 2018, ‘A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies’, Environmental Modelling & Software, vol. 108, pp. 67–71.
- Nielsen, A, Bolding, K, Hu, F, Trolle, D 2017, ‘An open source QGIS-based workflow for model application and experimentation with aquatic ecosystems’, Environmental Modelling & Software, vol. 95, pp. 358–364.
- Nishimura, T 2014, ‘Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS’, Progress in Earth and Planetary Sciences, vol. 1, no. 22.
- Okamura, Y, Nishizawa, A, Oikawa, M & Horiuchi, D 2017, ‘Differential subsidence of the forearc wedge of the Ryukyu (Nansei-Shoto) Arc caused by subduction of ridges on the Philippine Sea Plate’, Tectonophysics, vol. 717, pp. 399–412.
- Olson, CJ, Becker, JJ & Sandwell, DT 2014, ‘A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS’, in Proceedings of the AGU Fall Meeting Abstracts 2014, pp. 1–3, San Francisco, CA.
- Pushkov, AN 1981, Anomalies of the geomagnetic field and the deep structure of the Earth's crust, Naukova Dumka, Kiev.
- Sandwell, DT, Müller, RD, Smith, WHF, Garcia, E & Francis, R 2014, ‘New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure’, Science, vol. 346, issue 6205, pp. 65–67.
- Schenke, HW & Lemenkova, P 2008, ‘Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See’ [‘To the question of seafloor mapping: the use of AutoTrace digitizer for the vectorization of bathymetric data in the Pechora Sea’], Hydrographische Nachrichten, vol. 81, pp. 16–21.
- Schmitt, T & Weatherall, P 2014, ‘GEBCO and EMODNet—Bathymetry hand in hand: Improving global and regional bathymetric models of European waters’, Abstract OS31B-0989 presented at 2014 Fall Meeting, AGU, San Francisco, California, US, 15–19 December.
- Schmitt, T & Weatherall, P 2013, ‘GEBCO and EMODnet Bathymetry hands in hands’ in AGU Fall Meeting, San Francisco, US.
- Schmitt, T, Penard, C & Waddle, J 2015, ‘Uncertainty and bathymetric DEM—Developing an open source QGIS solution’ in Conference GEBCO Science day, Kuala Lumpur, Malaysia.
- Shu, Y, Nielsen, SG, Zeng, Z, Shinjo, R, Blusztajn, J, Wang, X & Chen, S 2017, ‘Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes’, Geochimica et Cosmochimica Acta, vol. 217, pp. 462–491.
- Smith, WHF & Sandwell, DT 1995, ‘Marine gravity field from declassified Geosat and ERS-1 altimetry’, EOS Transactions American Geophysical Union, vol. 76, Fall Mtng Suppl, F156.
- Smith, WHF & Sandwell, DT 1997, ‘Global sea floor topography from satellite altimetry and ship depth soundings’, Science, vol. 277, issue 5334, pp. 1956–1962.
- Suetova, IA, Ushakova, LA, & Lemenkova, P 2005, ‘Geoinformation mapping of the Barents and Pechora Seas’, Geography and Natural Resources, vol. 4, pp. 138–142.
- Ujiie, Y 2000, ‘Mud diapirs observed in two piston cores from the landward slope of the northern Ryukyu Trench, northwestern Pacific Ocean’, Marine Geology, vol. 163, pp. 149–167.
- Weatherall, P, Marks, KM, Jakobsson, M, Schmitt, T, Tani, S, Arndt, JE, Rovere, M, Chayes, D, Ferrini, V & Wigley, R 2015, ‘A new digital bathymetric model of the world's oceans’, Earth and Space Science, vol. 2, issue 8, pp. 331–345.
- Wessel, P & Smith, WHF 1996, ‘A global self-consistent, hierarchical, high-resolution shoreline database’, Journal of Geophysical Research, vol. 101, pp. 8741–8743.
- Wessel, P & Smith, WHF 2006, ‘New, improved version of the generic mapping tools released’. EOS Transactions American Geophysical Union, vol. 79, issue 47.
- Wessel, P & Smith, WHF 2018, The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook [Computer software manual], US.