References
- Baligar, VC, Fageria, NK, & He, ZL 2001, ‘Nutrient use efficiency in plants’, Communications in Soil Science and Plant Analysis, 32(7–8), pp. 921–950.
- Bochenek, Z, Dąbrowska-Zielińska, K, Gurdak, R, Niro, F, Bartold, M & Grzybowski, P 2017, ‘Validation of the LAI biophysical product derived from Sentinel-2 and Proba-V images for winter wheat in western Poland’, Geoinformation Issues, vol. 9, No 1(9), pp. 15–26. doi:10.34867/gi.2017.2
- Chaves, MM, Maroco, JP & Pereira, JS 2003 ‘Understanding plant responses to drought - from genes to the whole plant’, Functional Plant Biology, vol. 30(3), pp. 239–264.
- Claasen, MM & Shaw, RH 1970 ‘Water deficit effects on grain. II. Grain components’, Agron. J., vol. 62, pp. 652–655.
- Damm, A, Guanter, L, Paul-Limoges, E, van der Tol, C, Hueni, A, Buchmann, N, Eugster, W, Ammann, C & Schaepman, ME 2015, ‘Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: an assessment based on observational and modeling approaches’, Remote Sensing of Environment, vol. 166, pp. 91–105.
- Dąbrowska-Zielińska, K, Ciołkosz, A, Malińska, A & Bartold, M 2011, ‘Monitoring of agricultural drought in Poland using data derived from environmental satellite images’, Geoinformation Issues, vol. 3, no. 1(3), pp. 87–97. doi: 10.34867/gi.2011.7
- Doorenbos, J & Kassam, AK 1979, ‘Yield response to water’, Irrigation and Drainage Paper, vol 33, FAO, United Nations, Rome, pp. 176.
- Drusch, M, Moreno, J, Del Bello, U, Franco, R, Goulas, Y, Huth, A, Kraft, S, Middleton, EM, Miglietta, F & Mohammed, G 2017. ‘The FLuorescence EXplorer Mission Concept-ESA's Earth Explorer 8’, IEEE Trans. Geosci. Remote Sens., vol. 55, pp. 1273–1284
- Fernandez-Armesto, F 2011, The World: A History, Penguin Academics, pp. 470.
- Garrod, JF 1974, ‘The role of gibberellins in early growth and development of sugar beet’, Journal of Experimental Botany, vol. 25(5), pp. 945–954. doi:10.1093/jxb/25.5.945
- Genty, B, Briantais, JM & Baker, NR 1989, ‘The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence’ BBA – Gen Subj, 990, pp. 87–92
- Gobron, N, Pinty, B, Taberner, M, Mélin, F, Verstraete, MM & Widlowski, JL 2006, ‘Monitoring the photosynthetic activity of vegetation from remote sensing data’, Advances in Space Research, vol. 38(10), pp. 2196–2202. doi:10.1016/j.asr.2003.07.079
- Gurdak, R, Grzybowski, P 2018, ‘Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat’, Geoinformation Issues, vol. 10, No 1 (10), pp. 27–35. doi:10.34867/gi.2018.3
- Hillnhütter, C, Mahlein, AK, Sikora, RA & Oerke EC 2011, ‘Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields’, Field Crops Research, 122, pp. 70–77, doi:10.1016/j.fcr.2011.02.007
- Jones, HG 1992, ‘Plants and microclimate: a quantitative approach to environmental plant physiology’, Cambridge University Press.
- Kancheva, RH, Borisova, IT & Iliev, IT 2008, ‘Chlorophyll fluorescence as a plant stress indicator’, Proceedings of the 5th National Conference, Space Research Institute–Russian Academy of Sciences, Azbuka-2000 Ltd., Moscow, vol.5 (T.2), pp. 301–306
- Kitajima, M & Butler, WL 1975, ‘Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone’, Biochimica et Biophysica Acta, vol. 376, pp. 105–115.
- Kranner, I., Minibayeva, FV., Beckett, RP., & Seal, CE 2010, ‘What is stress? Concepts, definitions and applications in seed science’, New Phytologist, vol. 188(3), pp. 655–673, doi:10.1111/j.1469-8137.2010.03461.x
- Kycko, M, Zagajewski, B & Kozłowska A 2014, ‘Variability in spectral characteristics of trampled high-mountain grasslands’, Miscellanea Geographica, vol. 18(2), pp. 10–14.
- Kycko M 2017, Assessment of the dominant alpine sward species condition of the Tatra National Park using hyperespectral remote sensing, University of Warsaw, PhD thesis.
- Kycko, M, Zagajewski, B, Lavender, S & Dabija, A 2019a, ‘In situ hyperspectral remote sensing for monitoring of Alpine Trampled and Recultivated species’, Remote Sensing, vol. 11(11), 1296, pp. 1–24, doi:10.3390/rs11111296
- Kycko, M, Romanowska, E & Zagajewski, B 2019b, ‘Lead-Induced Changes in Fluorescence and Spectral Characteristics of Pea Leaves’, Remote Sensing, vol. 11(1885), pp. 1–21, doi:10.3390/rs11161885.
- Leufen, G, Noga, G & Hunsche, M 2014, ‘Fluorescence indices for the proximal sensing of powdery mildew, nitrogen supply and water deficit in sugar beet leaves’, Agriculture, vol. 4(2), pp. 58–78, doi:10.3390/agriculture4020058
- Li, X, Xiao, J, He, B, Altaf Arain, M, Beringer, J, Desai, AR, Emmel, C, Hollinger, DY, Krasnova, A & Mammarella, I 2018, ‘Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations’, Global Change Biology, vol. 24, pp. 3990–4008.
- Li, GL, Wu, HX, Sun, YQ & Zhang, SY, 2013, ‘Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings’. Russian Journal of Plant Physiology, 60(3), pp. 337–342, doi:10.1134/s1021443713020155
- Liu, L, Yang, X, Zhou, H, Liu, S, Zhou, L, Li, X & Wu, J 2018, ‘Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy’, Science of The Total Environment, vol. 625, pp. 1208–1217, doi:10.1016/j.scitotenv.2017.12.268
- López-Lozano, R, Duveiller, G, Seguini, L, Meroni, M, García-Condado, S, Hooker, J, Leo, O & Baruth, B 2015, ‘Towards regional grain yield forecasting with 1 km-resolution EO biophysical products: Strengths and limitations at pan-European level’, Agric. For. Meteorol., vol. 206, pp. 12–32.
- McFarlane, JC, Watson, RD, Theisen, AF, Jackson, RD, Ehrler, WL, Pinter, PJ, Idso, SB & Reginato, RJ 1980, ‘Plant stress detection by remote measurement of fluorescence’.. Appl. Opt., vol. 19, pp. 3287–3289
- Masialeti, I, Egbert, S & Wardlow, BD 2010, ‘A comparative analysis of phenological curves for major crops in Kansas’, GIScience & Remote Sensing, vol. 47(2), pp. 241–259. doi:10.2747/1548-1603.47.2.241
- Mathobo, R, Marais, D & Steyn, JM 2017, ‘The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)’, Agricultural Water Management, vol. 180, pp. 118–125.
- Maxwell, K & Johnson, GN 2000, ‘Chlorophyll fluorescence – a practical guide’, Journal of Experimental Botany, vol. 51, no. 345, pp. 659–668.
- Meroni, M, Rossini, M, Guanter, L, Alonso, L, Rascher, U, Colombo, R & Moreno, J 2009, ‘Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications’, Remote Sensing, vol. 113, pp. 2037–2051.
- Miguel Costa, J, Grant, OM, & Chaves, MM 2013, ‘Thermography to explore plantenvironment interactions’, Journal of Experimental Botany, vol. 64(13), pp. 3937–3949.
- Mohammeda, GH, Colombo, R, Middleton, EM, Rascherd, U, van der Tol, C, Nedbald, L, Goulasf, Y, Pérez-Priego, O, Damm, A, Meroni, M, Joiner, J, Cogliati, S, Verhoef, W, Malenovský, Z, Gastellu-Etchegorry, JP, Miller, JR, Guanter, L, Moreno, J, Moya, I, Berry, JA, Frankenberg, Ch & Zarco-Tejada, J 2019, ‘Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress’, Remote Sensing of Environment, vol. 231, pp. 111–177, doi:10.1016/j.rse.2019.04.030
- Pan, Z, Huang, J., Zhou, Q, Wang, L, Cheng, Y, Zhang, H & Liu, J 2015, ‘Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data’, International Journal of Applied Earth Observation and Geoinformation, vol. 34, pp. 188–197. doi:10.1016/j.jag.2014.08.011.
- Peng, Y, Zeng, A, Zhu, T, Fang, S, Gong, Y, Tao, Y, Zhou, Y & Liu, K 2017, ‘Using remotely sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active fluorescence measurements’, Journal of Applied Remote Sensing, vol. 11(2), pp. 1–15, doi:10.1117/1.jrs.11.026034.
- Peñuelas, J, Baret, F & Filella, I 1995, ‘Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance’, Photosynthetica, vol. 31, pp. 221–230.
- Peñuelas, J & Filella, I 1998, ‘Visible and near-infrared reflectance techniques for diagnosing plant physiological status’, Trends in Plant Science, vol. 4, no. 3, pp. 151–156.
- Pilar CM 2013, Chlorophyll fluorescence response to water and nitrogen deficit. The University of Arizona, Arizona, USA, PhD thesis.
- Plessis J 2003, Maize Production, Available from: Directorate Agricultural Information Services. [27.04.2020].
- Rolph, G 1873, Something about sugar: its history, growth, manufacture and distribution, San Francisco, J. J. Newbegin.
- Schreiber, U, Bilger, W & Neubauer, C 1995, ‘Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis’, Springer Berlin Heidelberg.
- Tan, CW, Huang, WJ, Jin, XL, Wang, JC, Tong, L, Wang, JH & Guo, WS 2012, ‘Monitoring the chlorophyll fluorescence parameter Fv/Fm in compact corn based on different hyperspectral vegetation indices’, Spectroscopy and Spectral Analysis, vol. 32(5), pp. 1287–1291.
- Wei, J, Tang, X, Gu, Q, Wang, M, Ma, M, & Han, X 2019, ‘Using solar-induced chlorophyll fluorescence observed by OCO-2 to predict autumn crop production in China’, Remote Sensing, vol. 11(14), 1715, pp. 1–14, doi:10.3390/rs11141715.
- Wilson, JH 1968 ‘Water relations of maize. Effects of severe soil moisture stress imposed at different stages of growth on grain yields of maize’, Rhodesia agricultural journal, vol. 6, pp. 103–105.
- Zagajeski, B, Kycko, M, Tømmervik, H, Bochenek, Z, Wojtuń, B, Bjerke, J & Kłos, A 2018, ‘Feasibility of hyperspectral vegetation indices for the detection of chlorophyll concentration in three high Arctic plants: Salix polaris, Bistorta vivipara, and Dryas octopetala’, Acta Societatis Botanicorum Poloniae, 87(4):3604, doi. 10.5586/asbp.3604.
- Zagajewski, B, Tømmervik, H, Bjerke, J, Raczko, E, Bochenek, Z, Kłos, A, Jarocińska, A, Lavender, S & Ziółkowski, D 2017, ‘Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants’, Remote Sensing, vol. 9(12), 1289, doi:10.3390/rs9121289.
- Zarco-Tejada, PJ, Morales, A, Testi, L, & Villalobos, FJ 2013, ‘Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance’, Remote Sensing of Environment, 133, pp. 102–115.