Have a personal or library account? Click to login
Remote sensing techniques to assess chlorophyll fluorescence in support of crop monitoring in Poland Cover

Remote sensing techniques to assess chlorophyll fluorescence in support of crop monitoring in Poland

Open Access
|Sep 2021

Figures & Tables

Figure 1

JECAM cropland site 25 km × 25 km, highlighted in yellow, with field sites where chlorophyll fluorescence were measuredSource: own elaboration
JECAM cropland site 25 km × 25 km, highlighted in yellow, with field sites where chlorophyll fluorescence were measuredSource: own elaboration

Figure 2

Scheme of workSource: own elaboration
Scheme of workSource: own elaboration

Figure 3

Chlorophyll fluorescence measurements on sugar beets with OS5p+ Pulse Modulated Chlorophyll FluorometerSource: photo by Maciej Bartold
Chlorophyll fluorescence measurements on sugar beets with OS5p+ Pulse Modulated Chlorophyll FluorometerSource: photo by Maciej Bartold

Figure 4

Time series of vegetation indices for maize and sugar beets during 2018–2019Source: own elaboration
Time series of vegetation indices for maize and sugar beets during 2018–2019Source: own elaboration

Figure 5

Sentinel-3 based land surface temperatures of maize and sugar beets during 2018–2019. The red crosses indicate mean, thin black lines median, green boxes 25%–75% ranges, black dots are outliersSource: own elaboration
Sentinel-3 based land surface temperatures of maize and sugar beets during 2018–2019. The red crosses indicate mean, thin black lines median, green boxes 25%–75% ranges, black dots are outliersSource: own elaboration

Figure 6

Maximum and mean temperatures, as well as total precipitation, noted in 2018 at the meteorological station in the town of KornikSource: own elaboration
Maximum and mean temperatures, as well as total precipitation, noted in 2018 at the meteorological station in the town of KornikSource: own elaboration

Figure 7

Maximum and mean temperature, as well as total precipitation, noted in 2019 at the meteorological station in the town of KornikSource: own elaboration
Maximum and mean temperature, as well as total precipitation, noted in 2019 at the meteorological station in the town of KornikSource: own elaboration

Vegetation indices calculated from Sentinel-2 satellite imagery

12345
ApplicationIndexDescriptionEquationReference
Assessment of the general condition of vegetationCTVICorrected Transformed Vegetation Index CTVI=(NDVI+0.5)|NDVI+0.5|*NDVI+0.5 {\rm{CTVI}} = {{\left( {{\rm{NDVI}} + 0.5} \right)} \over {\left| {{\rm{NDVI}} + 0.5} \right|}}*\sqrt {{\rm{NDVI}} + 0.5} Perry, 1984
DVIDifference Vegetation IndexDVI= aRNIR-RredRichardson, 1977
EVIEnhanced Vegetation Index EVI=RNIRRredRNIR+C1*RredC2*Rblue+L {\rm{EVI}} = {{{R_{NIR}} - {R_{red}}} \over {{R_{NIR}} + {C_1}*{R_{red}} - {C_2}*{R_{blue}} + L}} Huete, 1999
GEMIGlobal Environmental Monitoring Index GEMI=n(10.25n)Rred0.1251Rred {\rm{GEMI}} = {\rm{n}}\left( {1 - 0.25{\rm{n}}} \right) - {{{R_{red}} - 0.125} \over {1 - {R_{red}}}} Pinty, 1992
GNDVIGreen Normalized Difference Vegetation Index GNDVI=RNIRRgreenRNIR+Rgreen {\rm{GNDVI}} = {{{R_{NIR}} - {R_{green}}} \over {{R_{NIR}} + {R_{green}}}} Gitelson, 1998
IRECIInverted Red Edge Chlorophyll Index IRECI=(RNIRRred)Rrededge1/Rrededge2 {\rm{IRECI}} = {{\left( {{R_{NIR}} - {R_{red}}} \right)} \over {{R_{rededge1}}/{R_{rededge2}}}} Frampton et al., 2013
MSAVIModified Soil Adjusted Vegetation Index MSAVI=RNIRRredRNIR+Rred+L*(1+L) {\rm{MSAVI}} = {{{R_{NIR}} - {R_{red}}} \over {{R_{NIR}} + {R_{red}} + L}}*\left( {1 + L} \right) Qi et al., 1994
MSAVI2Modified Soil Adjusted Vegetation Index 2 MSAVI2=12[2*R800+1(2*R800+1)8*(R800R670)] {\rm{MSAVI}}2 = {1 \over 2}\left[ {2*{R_{800}} + 1 - \sqrt {\left( {2*{R_{800}} + 1} \right) - 8*\left( {{R_{800}} - {R_{670}}} \right)} } \right] Qi et al., 1994
NDREI1Normalized Difference Red Edge Index 1 NDREI1=R790R720R790+R720 {\rm{NDREI}}1 = {{{R_{790}} - {R_{720}}} \over {{R_{790}} + {R_{720}}}} Gitelson And Merzlyak, 1994
NDREI2Normalized Difference Red Edge Index 2 NDREI2=R750R705R750+R705*R445 {\rm{NDREI}}2 = {{{R_{750}} - {R_{705}}} \over {{R_{750}} + {R_{705}}*{R_{445}}}} Barnes, 2000
NDVINormalized Difference Vegetation Index NDVI=RNIRRredRNIR+Rred {\rm{NDVI}} = {{{R_{NIR}} - {R_{red}}} \over {{R_{NIR}} + {R_{red}}}} Rouse, 1974
NRVINormalized Ratio Vegetation Index NRVI=RredRNIR1RredRNIR+1 {\rm{NRVI}} = {{{{{R_{red}}} \over {{R_{NIR}}}} - 1} \over {{{{R_{red}}} \over {{R_{NIR}}}} + 1}} Baret, 1991
REIPRed Edge Inflection Point REIP=700+40((R670+R7802)R700R740R700) {\rm{REIP}} = 700 + 40\left( {{{\left( {{{{R_{670}} + {R_{780}}} \over 2}} \right) - {R_{700}}} \over {{R_{740}} - {R_{700}}}}} \right) Guyot And Barnet, 1988
RVIRatio Vegetation Index RVI=RredRNIR {\rm{RVI}} = {{{R_{red}}} \over {{R_{NIR}}}} Bannari et al., 1995
SATVISoil Adjusted Total Vegetation Index SATVI=RNIRRredRNIR+Rred+L*(1+L)RSWIR2 {\rm{SATVI}} = {{{R_{NIR}} - {R_{red}}} \over {{R_{NIR}} + {R_{red}} + L}}*\left( {1 + L} \right) - {{{R_{SWIR}}} \over 2} Marsett, 2006
SAVISoil Adjusted Vegetation Index SAVI=(1+L)(RNIRRred)RNIR+Rred+L {\rm{SAVI}} = {{\left( {1 + L} \right)\left( {{R_{NIR}} - {R_{red}}} \right)} \over {{R_{NIR}} + {R_{red}} + L}} Huete, 1988
SLAVISpecific Leaf Area Vegetation Index SLAVI=RNIRRred+RSWIR {\rm{SLAVI}} = {{{R_{NIR}}} \over {{R_{red}} + {R_{SWIR}}}} Lymburger et al., 2000
SRSimple Ratio Vegetation Index SR=RNIRRred {\rm{SR}} = {{{R_{NIR}}} \over {{R_{red}}}} Birth, 1968
TTVIThiam's Transformed Vegetation Index TTVI=|NDVI+0.5| {\rm{TTVI}} = \sqrt {\left| {{\rm{NDVI}} + 0.5} \right|} Thiam, 1997
TVITransformed Vegetation Index MSAVI2=12[120*(R750R550)200*(R670R550)] {\rm{MSAVI}}2 = {1 \over 2}\left[ {120*\left( {{R_{750}} - {R_{550}}} \right) - 200*\left( {{R_{670}} - {R_{550}}} \right)} \right] Deering, 1975
WDVIWeighted Difference Vegetation IndexWDVI=RNIR-a*RredRichardson, 1977
Assessment of photosynthetically active pigmentCLGChlorophyll Index Green CLG=RNIRRgreen1 {\rm{CLG}} = {{{R_{NIR}}} \over {{R_{green}}}} - 1 Gitelson, 2003
CLRERed-edge-band Chlorophyll Index CLRE=R750R7101 {\rm{CLRE}} = {{{R_{750}}} \over {{R_{710}}}} - 1 Gitelson, 2003
MCARIModified Chlorophyll Absorption Ratio Index MCARI=[(R700R670)0.2*(R700R550)]*(R700/R670) {\rm{MCARI}} = \left[ {\left( {{R_{700}} - {R_{670}}} \right) - 0.2*\left( {{R_{700}} - {R_{550}}} \right)} \right]*\left( {{R_{700}}/{R_{670}}} \right) Daughtery, 2000
MTCIMERIS Terrestrial Chlorophyll Index MTCI=R754R709R709R681 {\rm{MTCI}} = {{{R_{754}} - {R_{709}}} \over {{R_{709}} - {R_{681}}}} Dash And Curran, 2004
S2REPSentinel-2 Red-Edge Position Index S2REP=705+35*((RNIR+Rred)/2)R705(R740R705) {\rm{S}}2{\rm{REP}} = 705 + 35*{{\left( {\left( {{R_{NIR}} + {R_{red}}} \right)/2} \right) - {R_{705}}} \over {\left( {{R_{740}} - {R_{705}}} \right)}} Frampton et al., 2013
Assessment of the amount of light used in photosynthesisSIPIStructure Insensitive Pigment Index SIPI=R800R450R800+R650 {\rm{SIPI}} = {{{R_{800}} - {R_{450}}} \over {{R_{800}} + {R_{650}}}} Peñuelas et al., 1995
ZMIZarco-Tejada & Miller Index ZMI=R750R710 {\rm{ZMI}} = {{{R_{750}}} \over {{R_{710}}}} Zarco-Tejada et al., 2001
Assessment of water contentDSWIDisease Water Stress Index DSWI=R802+R547R1657+R682 {\rm{DSWI}} = {{{R_{802}} + {R_{547}}} \over {{R_{1657}} + {R_{682}}}} Galvão et al., 2005
MNDWIModified Normalized Difference Water Index MNDWI=RgreenRMIRRgreen+RMIR {\rm{MNDWI}} = {{{R_{green}} - {R_{MIR}}} \over {{R_{green}} + {R_{MIR}}}} Xu, 2006
NDWINormalized Difference Water Index NDWI=RgreenRNIRRgreen+RNIR {\rm{NDWI}} = {{{R_{green}} - {R_{NIR}}} \over {{R_{green}} + {R_{NIR}}}} McFeeters, 1996
NDWI2Normalized Difference Water 2 Index NDWI2=R857R1241R587+R1241 {\rm{NDWI2}} = {{{R_{857}} - {R_{1241}}} \over {{R_{587}} + {R_{1241}}}} Gao, 1996
NDIINormalized Difference Infrared Index NDII=R850R1650R580+R1650 {\rm{NDII}} = {{{R_{850}} - {R_{1650}}} \over {{R_{580}} + {R_{1650}}}} Hardisky et al., 1993

Linear regression equations for estimating ChlF (FV/FM)

CROP TYPEINDEXFORMULA
MAIZENDIIFV/FM = 0.68053 + 0.25102 * NDII
SIPIFV/FM = 1.1527 − 0.3640 * SIPI
SUGAR BEETSEVIFV/FM = 0.60230 + 0.07402 * EVI
S2REPFV/FM = −8.753 + 0.01317 * S2REP

Sentinel-3 cloud-free satellite images of croplands in Wielkopolska_ Actual state on 10_ September 2019_

Year20182019
MonthJulyAugustJulyAugust
Day5921281513174152526181213152223242628293031

Results of correlation analysis of ground measured ChlF and Vis (red color – results with the highest correlation coefficient)

AssessmentVegetation IndexMaizeSugar beets
R coefficientMAERMSEp-valueR coefficientMAERMSEp-value
Assessment of the general condition of vegetationCTVI0.190.080.070.4450.360.080.070.204
DVI0.240.070.070.3150.290.080.080.320
EVI0.610.030.030.0050.450.050.040.106
GEMI−0.260.070.070.275−0.250.080.080.394
GNDVI0.070.100.090.7670.350.090.090.226
IRECI0.640.020.020.0030.220.080.080.447
MSAVI0.170.080.070.4780.370.070.060.188
MSAVI20.170.080.070.4780.370.070.060.188
NDREI10.140.080.070.5790.350.070.070.213
NDREI20.060.100.090.8150.350.070.070.223
NDVI0.190.080.080.4290.350.070.070.214
NRVI−0.190.080.080.429−0.350.070.070.214
REIP0.150.080.070.5380.310.080.070.284
RVI−0.170.080.070.478−0.370.070.070.188
SATVI0.220.070.070.3620.400.050.050.152
SAVI0.560.040.030.0120.320.080.070.269
SLAVI0.370.060.060.1240.260.080.070.374
SR0.290.070.060.2330.210.080.080.479
TTVI0.190.080.070.4450.360.070.070.478
TVI0.550.040.040.0150.210.080.080.478
WDVI0.240.070.060.3150.290.080.070.320
Assessment of photosynthetically active pigmentCLG0.060.100.100.8050.240.070.070.401
CLRE0.090.100.090.7080.280.080.070.335
MCARI0.350.060.060.1410.260.070.060.377
MTCI−0.010.110.100.9800.380.060.060.186
S2REP0.460.060.050.0460.430.050.040.125
Assessment of the amount of light used in photosynthesisSIPI−0.680.020.020.0010.240.070.070.401
ZMI0.540.040.040.017−0.130.090.080.665
Assessment of water contentDSWI0.640.030.030.0030.220.070.060.460
MNDWI0.540.040.040.0170.090.090.090.751
NDWI−0.070.100.090.767−0.350.060.060.226
NDWI20.370.060.060.1200.330.070.060.251
NDII0.650.030.030.0020.310.070.070.279
DOI: https://doi.org/10.2478/mgrsd-2020-0029 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Page range: 226 - 237
Submitted on: Apr 28, 2020
Accepted on: Aug 13, 2020
Published on: Sep 26, 2021
Published by: Faculty of Geography and Regional Studies, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Radosław Gurdak, Maciej Bartold, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.