References
- Airbus Defence and Space, 2018. Available from: <www.intelligence-airbusds.com>. Access: 12/10/2017.
- Asare-Kyei, D, Forkuor, G & Venus, V 2015, ‘Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches’, Water, vol. 7, pp. 3531-3564.
- Byun, Y, Han, Y & Chae, TB 2015, ‘Image Fusion-Based Change Detection for Flood Extent Extraction Using Bi-Temporal Very High-Resolution Satellite Images’, Remote Sensing, vol. 7, pp. 10347-10363. 10.3390/rs70810347.
- Cundill, SL, van der Meijde, M, Robert, H & Hack, GK, 2014, ‘Investigation of Remote Sensing for Potential Use in Dike Inspection’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, pp. 733-746.
- DigitalGlobe 2018. Available from: <www.digitalglobe.com>. Access: 12/10/2017.
- El-Asmar, HM, Hereher, ME & El Kafrawy, SB 2013, ‘Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: A remote sensing approach’, The Egyptian Journal of Remote Sensing and Space Science, vol. 16(1), pp. 119-123.
- ESA Earth Online 2018. Available from: <https://earth.esa.int>. Access: 25/03/2018.
- Ho, LTK, Umitsu, M & Yamaguchi, Y 2010, ‘Flood Hazard Mapping By Satellite Images And Srtm Dem In The Vu Gia - Thu Bon Alluvial Plain, Central Vietnam’, Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, vol. XXXVIII, part 8, Kyoto Japan.
- Hossain, A & Easson, G 2004, Application of High Resolution Multispectral Imagery for Levee Slide Detection and Monitoring, Department of Geology and Geological Engineering, The University of Mississippi.
- Hu, Y, Huang, J, Du, Y, Han, P & Huang, W 2015, ‘Monitoring Spatial and Temporal Dynamics of Flood Regimes and Their Relation to Wetland Landscape Patterns in Dongting Lake from MODIS Time-Series Imagery’, Remote Sensing, vol. 7, pp. 7494-7520. 10.3390/rs70607494.
- Malinowski, R, Groom, G, Schwanghart, W & Heckrath, G 2015, ‘Detection and Delineation of Localized Flooding from WorldView-2 Multispectral Data’, Remote Sensing, vol. 7, pp. 14853-14875. 10.3390/rs71114853.
- Opole-nasze miasto, 2015. Available from: <http://opole.naszemiasto.pl>. Access: 20/12/2017.
- Pluto-Kossakowska, J, Osińska-Skotak, K, Łoś, H & Weintrit, B 2017, ‘The Concept of SAR Satellite Data Use for Flood Risk Monitoring in Poland’, Signal Processing Symposium 2017, Jachranka, Poland, pp. 1-5. 10.1109/SPS.2017.8053662.
- Rokni, K, Ahmad, A, Selamat, A & Hazini, S 2014, ‘Water feature extraction and change detection using multitemporal Landsat imagery’ Remote Sensing, vol. 6(5), pp. 4173-4189.
- Satellite Imaging Corporation 2018, Available from: <www.satimagingcorp.com>.
- Sądeczanin, 2014. Available from: <http://archiwum.sadeczanin.info>. Access: 21/12/2017.
- Skakun, S 2012, ‘The Use Of Time-Series Of Satellite Data To Flood Risk Mapping’, International Journal Information Models and Analyses vol.1, pp. 260-270..
- Shaker, A, Yan, WY & El-Ashmawy, N 2012, ‘Panchromatic Satellite Image Classification for Flood Hazard Assessment’, Journal of Applied Research and Technology, vol. 10, pp. 902-910.
- Stancalie, G, Craciunescu, V & Irimescu, A 2007, ‘Contribution of Earth observation data supplied by the new satellite sensors in flood risk mapping’, Remote Sensing for Environmental Monitoring and Change Detection, Proceedings of Symposium HS3007 at IUGG2007, Perugia, July 2007, IAHS Publ. vol. 316.