Have a personal or library account? Click to login
From Idea to Impact: The Role of Artificial Intelligence in the Transformation of Business Models Cover

From Idea to Impact: The Role of Artificial Intelligence in the Transformation of Business Models

Open Access
|Jun 2025

References

  1. Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2024). AI-powered innovation in digital transformation: Key pillars and industry impact. Sustainability, 16(5), 1790.https://doi.org/10.3390/su16051790
  2. Balcerzak, A. P., & Valaskova, K. (2024). Artificial intelligence: Financial management under pressure of transformative technology. Equilibrium Quarterly Journal of Economics and Economic Policy, 19(4), 1127–1137.https://doi.org/10.24136/eq.3394
  3. Balcerzak, A. P., Nica, E., Rogalska, E., Poliak, M., Kliestik, T., & Sabie, O. (2022). Blockchain technology and smart contracts in decentralized governance systems. Administrative Sciences, 12 (3), 96.https://doi.org/10.3390/admsci12030096
  4. Barker, M. (2023). Artificial intelligence-based Internet of manufacturing things systems, digital twin data modeling and visualization tools, and multi-sensory extended reality and geospatial mapping technologies in the immersive industrial metaverse. Economics, Management, and Financial Markets, 18(1), 41-56. https://doi.org/10.22381/EMFM18120233
  5. Brem, A., Giones, F., & Werle, M. (2021). The AI digital revolution in innovation: A conceptual framework of Artificial intelligence technologies for the management of innovation. IEEE Transactions on Engineering Management, 70(2), 770–776.https://doi.org/10.1109/tem.2021.3109983
  6. Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 355(6370), 1530–1534. https://doi.org/10.1126/science.aap8062
  7. Carayannis, E. G., Dumitrescu, R., Falkowski, T., Papamichail, G., & Zota, N. R. (2025). Enhancing SME resilience through artificial intelligence and strategic foresight: A framework for sustainable competitiveness. Technology in Society, 51, 102835.https://doi.org/10.1016/j.techsoc.2025.102835
  8. Carter, M., & Carter, C. (2020). The creative business model Canvas. Social Enterprise Journal, 16 (2), 141–158.https://doi.org/10.1108/sej-03-2019-0018
  9. CB Insights. (2024). Median valuations for artificial intelligence (AI) and non-AI startups worldwide in 2023, by stage (in million U.S. dollars). https://www.statista.com/statistics/1446293/median-valuations-ai-startups-by-stage/
  10. Climent, R. C., Haftor, D. M., & Staniewski, M. W. (2024). AI-enabled business models for competitive advantage. Journal of Innovation & Knowledge, 9(3), 100532.https://doi.org/10.1016/j.jik.2024.100532
  11. Consuegra, L. C., Vasquez, P. a. M., & Perez, A. M. M. (2023). Algoritmos de inteligencia artificial basada en perfiles socio conductuales para la segmentación inteligente de clientes: Estudio de caso. Ingeniería Y Competitividad,25(3). https://doi.org/10.25100/iyc.v25i3.12658
  12. Dabija, D. C., & Vătămănescu, E. (2023). Artificial intelligence: The future is already here. Oeconomia Copernicana, 14(4), 1053–1056. https://doi.org/10.24136/oc.2023.031
  13. De Vasconcelos Gomes, L. A., Farago, F. E., Facin, A. L. F., Flechas, X. A., & Silva, L. E. N. (2023). From open business model to ecosystem business model: A processes view. Technological Forecasting and Social Change, 194, 122668.https:ZZdoi.org/10.1016Zj.techfore.2023.122668
  14. Deligianni, I., Voudouris, I., Spanos, Y., & Lioukas, S. (2019). Non-linear effects of technological competence on product innovation in new technology-based firms: Resource orchestration and the role of the entrepreneur’s political competence and prior start-up experience. Technovation, 88, 102076.https://doi.org/10.1016/j.technovation2019.05.002
  15. Dokumacı, M. (2024). Legal frameworks for AI regulations. Human Computer Interaction., 8 (1), 133.https://doi.org/10.62802/ytst2927
  16. Fakieh, B., Al-Ghamdi, A. S. A., & Ragab, M. (2022). The effect of utilizing business model canvas on the satisfaction of operating electronic business. Complexity, 2022(1).https://doi.org/10.1155/2022/1649160
  17. Farahani, M. S., & Esfahani, A. (2022). Opportunities and challenges of applying artificial intelligence in the financial sectors and startups during the coronavirus outbreak. International Journal of Innovation in Management Economics and Social Sciences, 2(4), 33–55.https://doi.org/10.52547/ijimes.2.4.33
  18. Fu, D., Jenkinson, T., & Rauch, C. (2022). How do financial contracts evolve for new ventures? Journal of Corporate Finance, 81, 102222. https://doi.org/10.1016/j.jcorpfin.2022.102222
  19. Gambardella, A., & McGahan, A. M. (2009). Business-model innovation: General purpose technologies and their implications for industry structure. Long Range Planning, 43(2–3), 262–271.https://doi.Org/10.1016/j.lrp.2009.07.009
  20. Gentsch, P. (2019). AI in marketing, sales and service: How marketers without a data science degree can use AI, big data and bots. Springer.https://doi.org/10.1007/978-3-319-89957-2
  21. Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627–660.https://doi.org/10.5465/annals.2018.0057
  22. Gültekin, D. G., Pinarbasi, F., Yazici, M., & Adiguzel, Z. (2024). Commercialisation of artificial intelligence: A research on entrepreneurial companies with challenges and opportunities. Business Process Management Journal, 31(2), 605–630. https://doi.org/10.1108/bpmj-10-2023-0836
  23. Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – a taxonomy of data-driven business models used by start-up firms. International Journal of Operations & Production Management, 36(10), 1382–1406.https://doi.org/10.1108/ijopm-02-2014-0098
  24. Hossain, M. A., Akter, S., Yanamandram, V., & Wamba, S. F. (2023). Data-driven market effectiveness: The role of a sustained customer analytics capability in business operations. Technological Forecasting and Social Change, 194, 122745.https://doi.org/10.1016/j.techfore.2023.122745
  25. Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2022). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456.https://doi.org/10.1016Zj.eswa.2022.119456
  26. Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1).https://doi.org/10.1007/s44163-022-00022-8
  27. Jin, Y., Ji, S., Liu, L., & Wang, W. (2021). Business model innovation canvas: A visual business model innovation model. European Journal of Innovation Management, 25(5), 1469–1493.https://doi.org/10.1108/ejim-02-2021-0079
  28. Kaggwa, S., Eleogu, T. F., Okonkwo, F., Farayola, O. A., Uwaoma, P. U., & Akinoso, A. (2024). AI in decision making: Transforming business strategies. International Journal of Research and Scientific Innovation, 10(12), 423–444. https://doi.org/10.51244/ijrsi.2023.1012032
  29. Kaplan, A., & Haenlein, M. (2018). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.https://doi.org/10.1016/j.bushor.2018.08.004
  30. Kellogg, K. C., Valentine, M. A., & Christin, A. (2019). Algorithms at work: the new contested terrain of control. Academy of Management Annals, 14(1), 366–410.https://doi.org/10.5465/annals.2018.0174
  31. Kerzel, U. (2020). Enterprise AI canvas integrating artificial intelligence into business. Applied Artificial Intelligence, 35 (1), 1–12.https://doi.org/10.1080/08839514.2020.1826146
  32. Khan, I. U., Taherdoost, H., Madanchian, M., Ouaissa, M., Hajjami, S. E., & Rahman, H. (2024). Future tech startups and innovation in the age of AI (1st ed.). CRC Press. https://doi.org/10.1201/9781032715957
  33. Kliestik, T., Kral, P., Bugaj, M., & Durana, P. (2024). Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium Quarterly Journal of Economics and Economic Policy, 19(2), 429–461.https://doi.org/10.24136/eq.3108
  34. Kuteesa, N. K. N., Akpuokwe, N. C. U., & Udeh, N. C. A. (2024). Navigating the digital transformation journey: Strategies for startup growth and innovation in the digital era. International Journal of Scholarly Research in Multidisciplinary Studies, 4(2), 038–053.https://doi.org/10.56781/ijsrms.2024.4.2.0031
  35. Lee, B., Kim, B., & Ivan, U. V. (2023). Enhancing the competitiveness of AI technology-based startups in the digital era. Administrative Sciences, 14(1), 6. https://doi.org/10.3390/admsci14010006
  36. Libai, B., Bart, Y., Gensler, S., Hofacker, C. F., Kaplan, A., Kötterheinrich, K., & Kroll, E. B. (2020). Brave new world? On AI and the management of customer relationships. Journal of Interactive Marketing, 51 (1), 44–56.https://doi.org/10.1016/j.intmar.2020.04.002
  37. Macha-Huamán, R., Zavala-Zavala, O. M., Soto, F. C. N., Suárez, J. S. Z., Castañeda, D. R. Y., Lucar, R. G. C., Jibaja, L. C., Mejía, P. J. C., Montoya, C. M. S., Casco, R. J. E., & Romero-Carazas, R. (2023). Business model canvas in the entrepreneurs’ business model: A system approach. ICST Transactions on Scalable Information Systems, 10(5), 1–9. https://doi.org/10.4108/eetsis.3594
  38. Makarius, E. E., Mukherjee, D., Fox, J. D., & Fox, A. K. (2020). Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. Journal of Business Research, 120, 262–273. https://doi.org/10.1016/j.jbusres.2020.07.045
  39. Mao, H., Zhang, T., & Tang, Q. (2021). Research framework for determining how artificial intelligence enables information technology service management for business model resilience. Sustainability, 13(20), 11496. https://doi.org/10.3390/su132011496
  40. Martinović, M., Barać, R., & Maljak, H. (2024). Exploring Croatian consumer adoption of subscription-based e-commerce for business innovation. Administrative Sciences, 14 (7), 149.https://doi.org/10.3390/admsci14070149
  41. Metzker, Z. (2024). Selected demographic determinants of CSR, financial & environmental management and business ethics in SMEs. Deleted Journal, 2(1), 79–88.https://doi.org/10.62222/fend1256
  42. Mohammadi, N., & Shafiee, M. (2022). Predicting the success of seed-stage startups to enter the acceleration program and receive seed money. International Journal of Entrepreneurial Venturing, 14(2), 168.https://doi.org/10.1504/ijev.2022.122654
  43. Murray, A., & Scuotto, V. (2016). The business model canvas. Symphonya Emerging Issues in Management, 3, 94–109.https://doi.org/10.4468/2015.3.13murray.scuotto
  44. Musch, S., Borrelli, M. C., & Kerrigan, C. (2024). Bridging compliance and innovation: A comparative analysis of the EU AI Act and GDPR for enhanced organisational strategy. Journal of Data Protection & Privacy, 7(1), 14. https://doi.org/10.69554/fwhu3837
  45. Nagy, M., Figura, M., Valaskova, K., & Lăzăroiu, G. (2025). Predictive maintenance algorithms, artificial intelligence digital twin technologies, and internet of robotic things in big data-driven industry 4.0 manufacturing systems. Mathematics, 13(6), 981.https://doi.org/10.3390/math13060981
  46. Nagy, M., Lăzăroiu, G., & Valaskova, K. (2023). Machine intelligence and autonomous robotic technologies in the corporate context of SMES: Deep learning and virtual simulation algorithms, cyber-physical production networks, and industry 4.0-based manufacturing systems. Applied Sciences, 13(3), 1681. https://doi.org/10.3390/app13031681
  47. Ozay, D., Jahanbakht, M., Shoomal, A., & Wang, S. (2024). Artificial intelligence (AI)-based customer relationship management (CRM): A comprehensive bibliometric and systematic literature review with outlook on future research. Enterprise Information Systems, 18(7).https://doi.org/10.1080/17517575.2024.2351869
  48. Piotrowski, D., & Orzeszko, W. (2023). Artificial intelligence and customers’ intention to use robo-advisory in banking services. Equilibrium Quarterly Journal of Economics and Economic Policy, 18(4), 967–1007.https://doi.org/10.24136/eq.2023.031
  49. Purwanto, A. N. I., Fauzan, M., Widya, T., & Azzaky, N. S. (2024). Ethical Implications and challenges of AI implementation in business operations. Techcomp Innovations, 1(2), 68–82.https://doi.org/10.70063/techcompinnovations.v1i2.52
  50. Rahim, M. J., Afroz, A., & Akinola, O. (2025). Predictive analytics in healthcare: big data, better decisions. International Journal of Scientific Research and Modern Technology, 4 (1), 1-21.https://doi.org/10.5281/zenodo.14630840
  51. Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210.https://doi.org/10.5465/amr.2018.0072
  52. Riedl, R. (2022). Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions. Electronic Markets, 32(4), 2021–2051.https://doi.org/10.1007/s12525-022-00594-4
  53. Rios-Campos, C., Zambrano, E. O. G., Vargas, D. J. C., Merino, L. a. A., Vallejos, P. a. A., Alcantara, I. M. B., Rubio, D. E. D., Rodriguez, D. S., Tomanguilla, J. H., & Calderón, E. V. (2024). Startups and artificial intelligence. South Florida Journal of Development, 5(2), 950–969.https://doi.org/10.46932/sfjdv5n2-042
  54. Salwin, M., Jacyna-Gołda, I., Kraslawski, A., & Waszkiewicz, A. E. (2022). The use of business model canvas in the design and classification of product-service systems design methods. Sustainability, 14(7), 4283.https://doi.org/10.3390/su14074283
  55. Sarma, M., Senaratne, C., & Matheus, T. (2023). Challenges and opportunities of ethical AI and digital technology use in emerging economies. In M. Findlay, L. M. Ong & W. Zhang (Eds.), Elgar Companion to Regulating AI and Big Data in Emerging Economies (pp. 42–58). Edward Elgar Publishing.https://doi.org/10.4337/9781785362408.00009
  56. Selvakumar, P., Shanthi, M., Pitchiah, R., Sharma, M., Dahake, P. S., & T. C., M. (2025). The Role of Artificial Intelligence in Business Model Innovation: Overview of AI Technologies. In M. Khokhar (Ed.), AI-Driven Business Model Innovation (pp. 219-246). IGI Global Scientific Publishing.https://doi.org/10.4018/979-8-3693-9571-4.ch009
  57. Sestino, A., & De Mauro, A. (2021). Leveraging artificial intelligence in business: implications, applications and methods. Technology Analysis and Strategic Management, 34(1), 16–29.https://doi.org/10.1080/09537325.2021.1883583
  58. Sjödin, D., Parida, V., Palmié, M., & Wincent, J. (2021). How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. Journal of Business Research, 134, 574–587.https://doi.org/10.1016/j.jbusres.2021.05.009
  59. Smuha, N. A. (2021). From a ‘race to AI’ to a ‘race to AI regulation’: regulatory competition for artificial intelligence. Law Innovation and Technology, 13(1), 57–84.https://doi.org/10.1080/17579961.2021.1898300
  60. Song, X., & Bonanni, C. (2024). AI-driven business model: How AI-powered try-on technology is refining the luxury shopping experience and customer satisfaction. Journal of Theoretical and Applied Electronic Commerce Research, 19(4), 3067–3087.https://doi.org/10.3390/jtaer19040148
  61. Soussi, A., Zero, E., Sacile, R., Trinchero, D., & Fossa, M. (2024). Smart sensors and smart data for precision agriculture: A review. Sensors, 24(8), 2647.https://doi.org/10.3390/s24082647
  62. Stork, S., Morgenstern, R., Pölling, B., & Feil, J. (2023). Holistic business model conceptualisation—capturing sustainability contributions illustrated by nature-based solutions. Sustainability, 15(19), 14091.https://doi.org/10.3390/su151914091
  63. Svobodova, Z., Vecerova, V., Redlichova, R., & Somerlikova, K. (2024). Evaluation of the performance of SMEs in the context of regional development. Deleted Journal, 2(1), 47–60.https://doi.org/10.62222/riox8892
  64. Tang, X., Du, S., & Deng, W. (2025). Business innovation in digital startups: A case study of an AI startup. International Review of Economics & Finance, 98, 103898.https://doi.org/10.1016/j.iref.2025.103898
  65. Tani, M., Muto, V., Basile, G., & Nevi, G. (2025). A bibliometric analysis to study the evolution of artificial intelligence in business ethics. Business Ethics the Environment & Responsibility.https://doi.org/10.1111/beer.12797
  66. Ting, D. S., Peng, L., Varadarajan, A. V., Keane, P. A., Burlina, P. M., Chiang, M. F., Schmetterer, L., Pasquale, L. R., Bressler, N. M., Webster, D. R., Abramoff, M., & Wong, T. Y. (2019). Deep learning in ophthalmology: The technical and clinical considerations. Progress in Retinal and Eye Research, 72, 100759.https://doi.org/10.1016/j.preteyeres.2019.04.003
  67. Vasenska, I. P. (2024). Economic implications of deep machine learning for tourism time series forecasting. Ekonomicko-manažerske Spektrum, 18(1), 90-101. https://doi.org/10.26552/ems.2024.1.90–101
  68. Wang, Q., Zhang, F., & Li, R. (2024). Artificial intelligence and sustainable development during urbanization: Perspectives on AI R&D innovation, AI infrastructure, and AI market advantage. Sustainable Development, 33(1), 1136–1156.https://doi.org/10.1002/sd.3150
  69. Winecoff, A. A., & Watkins, E. A. (2022). Artificial concepts of artificial intelligence: Institutional compliance and resistance in AI startups. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (AIES ‘22) (pp. 788–799). ACM.https://doi.org/10.1145/3514094.3534138
  70. Wu, W., & Liu, S. (2023). Dilemma of the artificial intelligence regulatory landscape. Communications of the ACM, 66(9), 28–31. https://doi.org/10.1145/3584665
  71. Xie, X., Han, Y., Anderson, A., & Ribeiro-Navarrete, S. (2022). Digital platforms and SMEs’ business model innovation: Exploring the mediating mechanisms of capability reconfiguration. International Journal of Information Management, 65, 102513.https://doi.org/10.1016/j.ijinfomgt.2022.102513
  72. Zafar, A. (2024). Balancing the scale: Navigating ethical and practical challenges of artificial intelligence (AI) integration in legal practices. Discover Artificial Intelligence, 4 (1), 27.https://doi.org/10.1007/s44163-024-00121-8
  73. Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224.https://doi.org/10.1016/j.jii.2021.100224
DOI: https://doi.org/10.2478/mdke-2025-0008 | Journal eISSN: 2392-8042 | Journal ISSN: 2286-2668
Language: English
Page range: 120 - 147
Submitted on: Apr 2, 2025
Accepted on: Jun 1, 2025
Published on: Jun 25, 2025
Published by: Scoala Nationala de Studii Politice si Administrative
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marcel FIGURA, Denis JURACKA, Jorma IMPPOLA, published by Scoala Nationala de Studii Politice si Administrative
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.