Have a personal or library account? Click to login
Electricity Consumption Optimisation Trends for Educational, Commercial and Industrial Facilities Cover

Electricity Consumption Optimisation Trends for Educational, Commercial and Industrial Facilities

Open Access
|Dec 2025

References

  1. EC. (n.d.). The European Green Deal. Available at: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
  2. EC. (n.d.). Fit for 55. Available at: www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
  3. EC. (n.d.). The EU’s Main Investment Policy. https://ec.europa.eu/regional_policy/policy/what/investment-policy_en
  4. Portillo Juan, N., Negro Valdecantos, V., Olalde Rodríguez, J., & Iglesias, G. (2024). Environmental Policy vs. the Reality Of Greenhouse Gas Emissions From Top Emitting Countries. Energies, 17 (22), 5705. https://doi.org/10.3390/en17225705
  5. Clemens, T., Hunyadi-Gall, M., Lunzer, A., Arekhov, V., Datler, M., & Gauer, A. (2024). Wind–Photovoltaic–Electrolyzer– Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage. Energies, 17 (22), 5696. https://doi.org/10.3390/en17225696
  6. Backurs, A., Zemite, L., & Jansons, L. (2024). A Technical and Economic Study of Sustainable Power Generation Backup. Latvian Journal of Physics and Technical Sciences, 61 (4), 75–88. https://doi.org/10.2478/lpts-2024-0029
  7. Backurs, A., Jansons, L., Zemite, L., & Laizans, A. (2024). The Practical Implementation of Hydrogen-Based Sustainable Power Generation Backup. Latvian Journal of Physics and Technical Sciences, 61 (6), 69–79. https://doi.org/10.2478/lpts-2024-0044
  8. Ahmed, A., Pompodakis, E. E., Katsigiannis, Y., & Karapidakis, E. S. (2024). Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece. Energies, 17 (8), 1924. https://doi.org/10.3390/en17081924
  9. EC. Joint Research Centre. (n.d.). Energy Consumption Trends in the EU. Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC138989
  10. Eurostat. (n.d.). Electricity Production, Consumption and Market Overview. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview
  11. Schmitt, A. (2020). EU Energy Outlook 2050: How Will the European Electricity Market Develop over the next 30 Years? Energy BrainBlog. Available at: blog. energybrainpool.com/en/eu-energy-outlook-2050-how-will-the-european-electricity-market-develop-over-the-next-30-years/
  12. Czyzak, P. (2022). Shocked into Action – EU Countries’ Energy Policies. Ember. Available at: ember-climate.org/insights/research/eu-slashes-fossil-fuels/
  13. Wiśniewski, T. P. (2023). Investigating Divergent Energy Policy Fundamentals: Warfare Assessment of Past Dependence on Russian Energy Raw Materials in Europe. Energies, 16 (4), 2019. https://doi.org/10.3390/en16042019
  14. AST. (n.d.). Elektroenerģijas tirgus apskats [Electricity Market Overview]. Available at: https://www.ast.lv/lv/electricity-market-review?year=2024&month=13
  15. Klimata un enerģētikas ministrija. (2023). Starts Nacionālā klimata un enerģētikas plāna projekta diskusijām ar sociāliem partneriem, nozaru pārstāvjiem un NVO [Launch of Discussions on the Draft National Climate and Energy Plan with Social Partners, Industry and NGOs]. Available at: www.kem.gov.lv/lv/jaunums/starts-nacionala-klimataun-energetikas-plana-projekta-diskusijam-arsocialiem-partneriem-nozaru-parstavjiem-unnvo?utm_source=https%3A%2F%2Fwww.google.com%2F
  16. Lebedeva, K., Krumins, A., Tamane, A., & Dzelzitis, E. (2021). Analysis of Latvian Households’ Potential Participation in the Energy Market as Prosumers. Clean Technologies, 3 (2), 437–449. https://doi.org/10.3390/cleantechnol3020025
  17. Enerdata. (July, 2024). Latvia Energy Report. Available at: www.enerdata.net/estore/country-profiles/latvia.html
  18. Augstsprieguma tīkls AS. (2024). Elektroenergijas tirgus apskats [Electricity Market Overview]. Available at: ast.lv/en/electricity-market-review
  19. Upitis, M., Amolina, I., Geipele, I., & Zeltins, N. (2020). Measures to Achieve the Energy Efficiency Improvement Targets in the Multi-Apartment Residential Sector. Latvian Journal of Physics and Technical Sciences, 57 (6), 40–52. http://doi.org/10.2478/lpts-2020-0032
  20. Kundzina, A., Geipele, I., Lapuke, S., & Auders, M. (2022). Energy Performance Aspects of Non-Residential Buildings in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (6), 30–42. http://doi.org/10.2478/lpts-2022-0045
  21. International Energy Agency. (n.d.). Latvia – Countries & Regions. Available at: www.iea.org/countries/latvia
  22. Zemite, L., Kazadajevs, J., Jansons, L., Bode, I., Dzelzitis, E., & Palkova, K. (2024). Integrating Renewable Energy Solutions in Small-Scale Industrial Facilities. Energies, 17 (11), 2792–2792. https://doi.org/10.3390/en17112792
  23. Tisenkopfs, M., Jansons, L., Geipele, I., Lapuke, S., & Backurs, A. (2025). Optimization of Electricity Consumption-Associated Costs in a Medium-Sized Logistics Company. Energies, 18 (12), 3206. https://doi.org/10.3390/en18123206
  24. Jasevics, A., Zemite, L., & Kunickis, M. (2017). Demand load control with smart meters. In: 58th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2017 – Proceedings, 2017, (pp. 1–6). 12–13 October 2017, Riga, Latvia. http://doi.org/10.1109/RTUCON.2017.8124757
  25. Eurostat. (n.d.). Electricity and Gas: 64.5% of Industrial Final Energy Use. https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20240513-1?utm
  26. Eurostat. (n.d.). Final Energy Consumption in Industry – Detailed Statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Final_energy_consumption_in_industry_-_detailed_statistics&oldid=637442
  27. Gajdzik, B., Nagaj, R., Wolniak, R., Bałaga, D., Žuromskaitė, B., & Grebski, W. W. (2024). Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries. Energies, 17 (11), 2476. https://doi.org/10.3390/en17112476
  28. PV-magazine. (21 March, 2025). GB Energy Invests in Rooftop Solar Rollout for UK Schools and Hospitals. Available at: https://www.pv-magazine.com/2025/03/21/gb-energy-invests-in-rooftop-solar-rollout-for-uk-schools-hospitals/#:~:text=The%20GBP%20200%20million%20($258%20million)%20commitment,be%20installed%20by%20the%20end%20of%20summer
  29. The Guardian. (18 October 2024). ‘Community action’: Oxfordshire’s Low Carbon Hub on Its Local Renewable Energy Projects. Available at: https://www.theguardian.com/environment/2024/oct/18/community-action-oxfordshires-low-carbon-hub-on-its-local-renewable-energy-projects
  30. Solar Plus. (2 February 2025). Harnessing the Power of the Sun: The Benefits of Solar Panels for Schools and Educational Institutions. Available at: https://www.solarnplus.com/harnessing-the-power-ofthe-sun-the-benefits-of-solar-panels-for-schools-and-educational-institutions/
  31. ClimACT. (n.d.). INTERREG SUDOE – ClimACT. Available at: https://www.ecoschools.global/climact
  32. Eu4municipalities. (n.d.). Golem: Harnessing Solar Energy at a High School Using Photovoltaic Panels. Available at: https://eu4municipalities.al/en/golem-harnessing-solar-energy-at-a-high-school-using-photovoltaic-panels/
  33. EC. (10 June 2021). Cross-Border Schools Initiative Reduces Pollution and Promotes Renewable Energy. Available at: https://ec.europa.eu/regional_policy/en/projects/Europe/cross-border-schools-initiative-reduces-pollution-and-promotes-renewable-energy
  34. The Guardian. (n.d.). Drones, Driving and Decarbonising Schools: How Coventry is Leading the Way in Energy Innovation. Available at: https://www.theguardian.com/urban-energy-innovation/2025/mar/18/drones-driving-and-decarbonising-schools-how-coventry-is-leading-the-way-in-energy-innovation
  35. EC. (20 February 2018). Positive Energy Zero Carbon Dioxide Primary School. Available at: https://www.interregeurope.eu/good-practices/positive-energy-zero-carbon-dioxide-primary-school
  36. Tamesol. (25 June 2024). Explore 2024’s Most Impressive Solar Energy Schools in Europe. Available at: https://tamesol.com/en/solar-energy-schools/
  37. Cabinet of Ministers. (15 April 2021). Ēku energoefektivitātes aprēķina metodes un ēku energosertifikācijas noteikumi. [Methods for Calculating the Energy Performance of Buildings and Rules for the Energy Certification of Buildings]. Latvijas Vestnesis, 72. Available at: https://likumi.lv/ta/id/322436-ekuenergoefektivitates-aprekina-metodes-uneku-energosertifikacijas-noteikumi
  38. Garcia, R. (29 April 2022). The 100 Climate-Neutral and Smart Cities by 2030. Eurocities. Available at: eurocities.eu/latest/the-100-climate-neutral-and-smart-cities-by-2030/?gad_source=1&gclid=CjwKCAiA_tuu BhAUEiwAvxkgTixE31QPD8VZvOU7n4 KuYWi_EMbRbG1WapKy2lQ6c9Ak 08kiLUF_pBoCtRcQAvD_BwE
  39. Ecodoma. (2024). Liepājas valstspilsētas ilgtspējīgas enerģētikas un klimata rīcības plāns 2023.–2030.gadam [Liepaja Sustainable Energy and Climate Action Plan 2023–2030]. Available at: https://faili.liepaja.lv/Publikacijas/42__22_02_24__PIELIKUMS__ENERGETIKAS_KLIMATA_RICIB.pdf
  40. Liepajniekiem.lv. (n.d.). Liepājas vakara maiņu vidusskolu plāno pārcelt uz plašākām telpām. [Liepaja Evening Shift Secondary School to Move to Bigger Premises] Available at: https://www.liepajniekiem.lv/zinas/sabiedriba/liepajas-vakara-mainuvidusskolu-plano-parcelt-uz-plasakamtelpam/
  41. EC. (29 January 2024). Reinvesting Energy Savings for a Climate-Neutral Future in Riga. Available at: https://eu-mayors.ec.europa.eu/en/Reinvesting-energy-savings-for-a-climate-neutral-future-Riga-Case-Study
  42. Rigas Planošanas reģions. (3 April 2025). Sanāksmē pārrunā par ēku viedās gatavības risinājumiem [Meeting Discusses Smart Building Readiness Solutions]. Available at: https://rpr.gov.lv/sanaksme-parruna-pareku-viedas-gatavibas-risinajumiem/?fbclid=IwY2xjawKsUm1leHRuA2FlbQIxMAABHrWQqjA-6FZz1dTbJ9NhJ735JBRPzuXbSuNHdCOX3py_ctJKD_qvDzlwlrIT_aem_XmyrH5cpbwiNRHkDIaRd8A
  43. Rigas Dome. (21 January 2025). Rīgas skolas saņem energosertifikātus – plašs solis galvaspilsētas energoefektivitātes uzlabošanā [Riga Schools Receive Energy Certificates – A Major Step towards Improving the Capital’s Energy Efficiency]. Available at: https://www.riga.lv/lv/jaunums/rigas-skolas-sanem-energosertifikatus-plasssolis-galvaspilsetas-energoefektivitatesuzlabosana?utm
  44. Ali-Tagba, A.-R., Baneto, M., & Lucache, D. D. (2024). Factors Influencing the Energy Consumption in a Building: Comparative Study between Two Different Climates. Energies, 17 (16), 4041. https://doi.org/10.3390/en17164041
  45. Mendoza, D. L., Bianchi, C., Thomas, J., & Ghaemi, Z. (2020). Modeling County-Level Energy Demands for Commercial Buildings Due to Climate Variability with Prototype Building Simulations. World, 1 (2), 67–89. https://doi.org/10.3390/world1020007
  46. Ekonomou, G., & Menegaki, A. N. (2023). The Role of Energy Use in Buildings in Front of Climate Change: Reviewing a System’s Challenging Future. Energies, 16 (17), 6308. https://doi.org/10.3390/en16176308
  47. Gao, L., Wang, S., Mao, M., Liu, C., & Li, T. (2024). Study on Energy Consumption Characteristics and the Self-Sufficiency Rate of Rooftop Photovoltaic of University Campus Buildings. Energies, 17 (14), 3535. https://doi.org/10.3390/en17143535
  48. Quispe, E. C., Viveros Mira, M., Chamorro Díaz, M., Castrillón Mendoza, R., & Vidal Medina, J. R. (2025). Energy Management Systems in Higher Education Institutions’ Buildings. Energies, 18 (7), 1810. https://doi.org/10.3390/en18071810
  49. Rus, T., Moldovan, R.-P., Pop, M. I., & Moldovan, A.-M. (2025). Assessing the Interplay of Indoor Environmental Quality, Energy Use, and Environmental Impacts in Educational Buildings. Applied Sciences, 15 (7), 3591. https://doi.org/10.3390/app15073591
  50. Bodó, B., Béni, E., L. & Szabó, G. (2023). A Facility’s Energy Demand Analysis for Different Building Functions. Buildings, 13 (8), 1905. https://doi.org/10.3390/buildings13081905
  51. Verstina, N., Solopova, N., Taskaeva, N., Meshcheryakova, T., & Shchepkina, N. (2023). Evaluation of the Energy Efficiency Class of an Industrial Facility: A Rating System and a Scale of Sustainable Development. Sustainability, 15 (22), 15799. https://doi.org/10.3390/su152215799
  52. Verstina, N., Solopova, N., Taskaeva, N., Meshcheryakova, T., & Shchepkina, N. (2022). A New Approach to Assessing the Energy Efficiency of Industrial Facilities. Buildings, 12 (2), 191. https://doi.org/10.3390/buildings12020191
  53. Solargis. (n.d.). Solar Resource Maps of Latvia. Available at: https://solargis.com/resources/free-maps-and-gis-data?locality=latvia
  54. Li, J., Liang, C., & Zhou, W. (2024). A Review of Building Physical Shapes on Heating and Cooling Energy Consumption. Energies, 17 (22), 5766. https://doi.org/10.3390/en17225766
  55. Begić Juričić, H., Krstić, H., & Domazetović, M. (2025). Analyzing the Carbon Performance Gap and Thermal Energy Performance Gap of School Buildings in Osijek-Baranja County, Croatia. Energies, 18 (7), 1818. https://doi.org/10.3390/en18071818
  56. Romero, P., Valero-Amaro, V., Arranz, J. I., Sepúlveda, F. J., & Miranda, M. T. (2025). Indoor Air Quality and Thermal Comfort in University Classrooms in Southwestern Spain: A Longitudinal Analysis from Pandemic to Post-Pandemic. Buildings, 15 (5), 829. https://doi.org/10.3390/buildings15050829
  57. Mannheim, V., Nehéz, K., Brbhan, S., & Bencs, P. (2023). Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment. Energies, 16 (19), 6995. https://doi.org/10.3390/en16196995
  58. Teli, D. (2025). Children’s Thermal Comfort in School Classrooms: Influence of Contextual Factors, Thermal Experience, and Diurnal Variations. Building and Environment, 277, 112916 https://doi.org/10.1016/j.buildenv.2025.112916
  59. Hossain, J., Kadir, A. F. A., Hanafi, A. N., Shareef, H., Khatib, T., Baharin, K. A., & Sulaima, M. F. (2023). A Review on Optimal Energy Management in Commercial Buildings. Energies, 16 (4), 1609. https://doi.org/10.3390/en16041609
  60. Lamberti, G., Salvadori, G., Leccese, F., Fantozzi, F., & Bluyssen, P. M. (2021). Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability, 13 (18), 10315. https://doi.org/10.3390/su131810315
  61. Su, B., Jadresin Milic, R., McPherson, P., & Wu, L. (2022). Thermal Performance of School Buildings: Impacts beyond Thermal Comfort. International Journal of Environmental Research and Public Health, 19 (10), 5811. https://doi.org/10.3390/ijerph19105811
  62. Aguilar-Carrasco, M. T., López-Lovillo, R. M., Suárez, R., & León-Rodríguez, Á. L. (2025). Ventilation Strategies to Ensure Thermal Comfort for Users in School Buildings: A Critical Review. Applied Sciences, 15 (10), 5449. https://doi.org/10.3390/app15105449
  63. Nowak S., Gutschner M., Ruoss D., Togweiler P., & Schoen T. (2002). Potential for Building Integrated Photovoltaics. Report IEA-PVPS T7-4. Available at: https://iea-pvps.org/wp-content/uploads/2020/01/rep7_04.pdf
  64. Vimpari, J., & Junnila, S. (2019). Estimating the diffusion of rooftop PVs: A real estate economics perspective. Energy, 172, 1087–1097. https://doi.org/10.1016/j.energy.2019.02.049
  65. EC. (n.d.). Photovoltaic Geographical Information System. Available at: https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP
  66. US Department of Energy. (n.d.). Solar Soft Costs Basics. Available at: https://www.energy.gov/eere/solar/solar-soft-costs-basics
  67. Shimura, S., Herrero, R., Zuffo, M., & Grimoni, J. (2016). Production costs estimation in photovoltaic power plants using reliability. Solar Energy, 133, 294–304. https://doi.org/10.1016/j.solener.2016.03.070
  68. Nord Pool. (n.d.). Day-ahead Prices. Available at: https://data.nordpoolgroup.com/auction/day-ahead/prices?deliveryDate=2024-01-01&currency=EUR&aggregation=MonthlyAggregate&deliveryAreas=LV
  69. Cabinet of Ministers. (9 November 2023). Elektroenerģijas tirdzniecības un lietošanas noteikumi. [Regulations on the Sale and Use of Electricity]. Available at: https://likumi.lv/ta/id/347235-elektroenergijastirdzniecibas-un-lietosanas-noteikumi
  70. Ramadan, O., Omer, S., Ding, Y., Jarimi, H., Chen, X., & Riffat, S. (2018). Economic Evaluation of Installation of Standalone Wind Farm and Wind + CAES System for the New Regulating Tariffs for Renewables in Egypt. Therm. Sci. Eng. Prog., 7, 311–325. https://doi.org/10.1016/j.tsep.2018.06.005
  71. Carneiro, P., & Ferreira, P. (2012).The Economic, Environmental and Strategic Value of Biomass. Renew. Energy, 44, 17–22. https://doi.org/10.1016/j.renene.2011.12.020
  72. Talavera, D.L., Nofuentes, G., Aguilera, J., & Fuentes, M. (2007). Tables for the Estimation of the Internal Rate of Return of Photovoltaic Grid-Connected Systems. Renew. Sustain. Energy Rev., 11, 447–466. https://doi.org/10.1016/j.rser.2005.02.002
  73. Kabeyi, M.J.B., & Olanrewaju, O.A. (2023). The Levelized Cost of Energy and Modifications for Use in Electricity Generation Planning. Energy Reports, 9 (9), 495–534. https://doi.org/10.1016/j.egyr.2023.06.036
  74. Siddaiah, R., & Saini, R.P. (2016). A Review on Planning, Configurations, Modeling and Optimization Techniques of Hybrid Renewable Energy Systems for Off-grid Applications. Renew. Sustain. Energy Rev., 58, 376–396. https://doi.org/10.1016/j.rser.2015.12.281
  75. Ueckerdt, F., Hirth, L., Luderer, G., & Edenhofer, O. (2013). System LCOE: What are the Costs of Variable Renewables? Energy, 63, 61–75. https://doi.org/10.1016/j.energy.2013.10.072
  76. AFP. (2024). Net Present Value vs. Internal Rate of Return. Available at: https://www.financialprofessionals.org/training-resources/resources/articles/details/net-present-value-vs.-internal-rate-of-return
  77. Michigan State University. (n.d.). Present Value Models. Available at: https://openbooks.lib.msu.edu/financialmanagement/chapter/present-value-models/
  78. Delapedra-Silva, V., Ferreira, P., Cunha, J., & Kimura, H. (2022). Methods for Financial Assessment of Renewable Energy Projects: A Review. Processes, 10, 184. https://doi.org/10.3390/pr10020184
  79. Zalitis, I., Dolgicers, A., Zemite, L., Ganter, S., Kopustinskas, V., Vamanu, B., … & Häring, I. (2022). Mitigation of the Impact of Disturbances in Gas Transmission Systems. International Journal of Critical Infrastructure Protection, 39, 100569. http://doi.org/10.1016/j.ijcip.2022.100569
  80. Jordan, D. C., &Kurtz, S. R. (2012). Photovoltaic Degradation. Rates – An Analytical Review. NREL. Available at: https://docs.nrel.gov/docs/fy12osti/51664.pdf
  81. EC. (2014). Guide to Cost-Benefit Analysis of Investment Projects. Directorate-General for Regional and Urban Policy. Available at: https://ec.europa.eu/regional_policy/sources/studies/cba_guide.pdf
  82. Chwieduk, D., & Chwieduk, B. (2023). Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland. Energies, 16 (8), 3495. https://doi.org/10.3390/en16083495
  83. Md Khairi, N.H., Akimoto, Y., & Okajima, K. (2022). Suitability of Rooftop Solar Photovoltaic at Educational Building towards Energy Sustainability in Malaysia. Sustainable Horizons, 4, 100032, https://doi.org/10.1016/j.horiz.2022.100032
  84. Walmsley, T.G., Philipp, M., Picón-Núñez, M., Meschede, H., Taylor, M.T., Schlosser, F., & Atkins, M.J. (2023). Hybrid Renewable Energy Utility Systems for Industrial Sites: A Review. Renewable and Sustainable Energy Reviews, 188. https://doi.org/10.1016/j.rser.2023.113802
  85. Serrano-Arévalo, T. I., Ochoa-Barragán, R., Ramírez-Márquez, C., El-Halwagi, M., Abdel Jabbar, N., & Ponce-Ortega, J. M. (2025). Energy Storage: From Fundamental Principles to Industrial Applications. Processes, 13 (6), 1853. https://doi.org/10.3390/pr13061853
  86. Ghaleb, B., Khan, M. I., & Asif, M. (2024). Application of PV on Commercial Building Facades: An Investigation into the Impact of Architectural and Structural Features. Sustainability, 16 (20), 9095. https://doi.org/10.3390/su16209095
  87. Del Pero, C., Leonforte, F., & Aste, N. (2024). Building-Integrated Photovoltaics in Existing Buildings: A Novel PV Roofing System. Buildings, 14 (8), 2270. https://doi.org/10.3390/buildings14082270
  88. Ramos-Paja, C. A., Trejos-Grisales, L. A., & Serna-Garcés, S. I. (2025). Building Integrated Photovoltaic Systems: Characteristics and Power Management. Processes, 13 (6), 1650. https://doi.org/10.3390/pr13061650
  89. Bošnjaković, M., Veljić, N., & Hradovi, I. (2025). Perspectives of Building-Integrated Wind Turbines (BIWTs). Smart Cities, 8 (2), 55. https://doi.org/10.3390/smartcities8020055
  90. Coccato, S., Barhmi, K., Lampropoulos, I., Golroodbari, S., & van Sark, W. (2025). A Review of Battery Energy Storage Optimization in the Built Environment. Batteries, 11 (5), 179. https://doi.org/10.3390/batteries11050179
  91. Gabbar, H. A., & Ramadan, A. (2025). Integrated Renewable Energy Systems for Buildings: An Assessment of the Environmental and Socio-Economic Sustainability. Sustainability, 17 (2), 656. https://doi.org/10.3390/su17020656
  92. Figaj, R. (2024). Energy and Economic Sustainability of a Small-Scale Hybrid Renewable Energy System Powered by Biogas, Solar Energy, and Wind. Energies, 17 (3), 706. https://doi.org/10.3390/en17030706
  93. Brennenstuhl, M., Otto, R., Pietruschka, D., Schembera, B., & Eicker, U. (2025). Optimized Dimensioning and Economic Assessment of Decentralized Hybrid Small Wind and Photovoltaic Power Systems for Residential Buildings. Energies, 18 (7), 1811. https://doi.org/10.3390/en18071811
  94. Cangul, O., Rocchetta, R., Fahrioglu, M., & Patelli, E. (2023). Optimal Allocation and Sizing of Decentralized Solar Photovoltaic Generators Using Unit Financial Impact Indicator. Sustainability, 15 (15), 11715. https://doi.org/10.3390/su151511715
  95. Peng, K., Ma, M., Zhao, W., & Zhang, R. (2025). Multi-Criteria Optimal Operation Strategy for Photovoltaic Systems in Large-Scale Logistics Parks Concerning Climate Impact. Buildings, 15 (3), 377. https://doi.org/10.3390/buildings15030377
DOI: https://doi.org/10.2478/lpts-2025-0042 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 17 - 53
Published on: Dec 6, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 D. Kronkalns, A. Backurs, L. Jansons, E. Dzelzitis, L. Zemite, A. Laizans, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.