References
- European Commission. (2020). Hydrogen Strategy for a Climate-Neutral Europe, COM(2020) 301 Final. Brussels. Available at https://energy.ec.europa.eu/system/files/2020-07/hydrogen_strategy_0.pdf
- Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, O. E., Ekins, P., … & Ward, K. R. (2019). The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy & Environmental Science, 12, 463–491. https://doi.org/10.1039/C8EE01157E
- Phogat, P., Chand, B., & Shreya. (2025). Hydrogen Economy: Pathways, Production Methods, and Applications for a Sustainable Energy Future. Sustainable Materials and Technologies, 45. https://doi.org/10.1016/j.susmat.2025.e01550
- Abánades, H., Rubbia, C., & Salmieri, D. (2013). Thermal Cracking of Methane into Hydrogen for a CO2-Free Utilization of Natural Gas. Int. J. of Hydrogen Energy., 38 (20), 8491–8496. https://doi.org/10.1016/j.ijhydene.2012.08.138
- Swartbooi, A., Kapanji-Kakoma, K. K., & Musyoka, N. M. (2022). From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons. Sustainability, 14 (17), 11050. https://doi.org/10.3390/su141711050
- Bayat, N., Rezaei, M., & Meshkani, F. (2016). Methane Decomposition over Ni–Fe/Al2O3 Catalysts for Production of COx-Free Hydrogen and Carbon Nanofiber. Int. J. of Hydrogen Energy, 41 (3), 1574–1584. https://doi.org/10.1016/j.ijhydene.2015.10.053
- Wang, P., Zhu, H., Huang, M., Wan, C., Li, D., & Jiang, L. (2022). Catalytic Methane Decomposition to Hydrogen and Carbon over Hydrotalcite-Derivative Composition-Uniform and Sintering-Resistant Ni-Fe/Al2O3 Alloy Catalysts. Int. J. Energy Res., 46, 16810–16822. https://doi.org/10.1002/er.8349
- Karaismailoğlu, M., Figen, H. E., & Baykara, S. Z. (2020). Methane Decomposition over Fe-based Catalysts. Int. J. Hydrogen Energy, 45 (60), 34773–34782. https://doi.org/10.1016/j.ijhydene.2020.07.219
- Khaleel, A., Adamson, A., & Pillantakath, A.-R. (2024). The Impact of Surface-Impregnated versus Support-Dispersed Fe in Fe–Ni/γ-Al2O3 Catalysts for Partial Oxidation of Methane: Insights into the Effect of Fe Incorporation Method on Coking and on the Reaction Mechanism. Int. J. Hydrogen Energy, 81, 643–653. https://doi.org/10.1016/j.ijhydene.2024.07.191
- Esteves, L. M., Daas, A. A., Oliveira, H. A., & Passos, F. B. (2020). Effect of Catalyst Pretreatment on Ni-based Catalysts for Methane Decomposition. Int. J. Hydrogen Energy, 45 (51), 27299–27311. https://doi.org/10.1016/j.ijhydene.2020.07.133
- Azancot, L., Bobadilla, L. F., Santos, J. L., Cordoba, J. M., Centeno, M. A., & Odriozola, J. A. (2019). Influence of the Preparation Method in the Metal-Support Interaction and Reducibility of Ni-Mg-Al Based Catalysts for Methane Steam Reforming. Int. J. Hydrogen Energy, 44 (36). 19827–19840. https://doi.org/10.1016/j.ijhydene.2019.05.167
- Laybo, D., Etim, U. J., Monai, M., Bare, S. R., Zhong, Z., & Vogt, C. (2024). Metal–Support Interactions in Metal Oxide-Supported Atomic, Cluster, and Nanoparticle Catalysis. Chem. Soc. Rev., 53, 10450–10490. https://doi.org/10.1039/D4CS00527A
- Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B, 61, 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095
- El-Maghraby, A., El-Deeb, H. A., & Khattab, M. A. (2015). Influence of FeNi/Al2O3 Catalyst Compositions on the Growth of Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures 23 (1). https://doi.org/10.1080/1536383X.2012.702159
- Shekhar, S., Tripathi, K., Karton, A., Roy, S., Joshi, R., & Pant, K. K. (2025). Influence of Ni on Carbon Nanotube Production with Fe-based Catalysts. Chem. Commun., 61, 2063–2066. https://doi.org/10.1039/D4CC05698A
- Sun, E., Zhai, S., Kim, D., Gigantino, M., Haribal, V., Dewey, O. S., … & Majumdar, A. (2023). A Semi-Continuous Process for Co-production of CO2-Free Hydrogen and Carbon Nanotubes via Methane Pyrolysis. Cell Reports Physical Science, 4 (4), 101338. https://doi.org/10.1016/j.xcrp.2023.101338
- Wang, I. W., Kutteri, D. A., Gao, B., Tian, H., & Hu, J. (2019). Methane Pyrolysis for Carbon Nanotubes and COx -Free H2 over Transition-Metal Catalysts. Energy and Fuels, 33 (1), 197–205. https://doi.org/10.1021/acs.energyfuels.8b03502
- Wang, D., Zhang, J., Sun, J., Gao, W., & Cui, Y. (2019). Effect of Metal Additives on the Catalytic Performance of Ni/Al2O3 Catalyst in Thermocatalytic Decomposition of Methane. Int. J. of Hydrogen Energy, 44 (14), 7205–7215. https://doi.org/10.1016/j.ijhydene.2019.01.272
- Zhang, W., Gao, L., Zhang, M., Cui, J., Li, Y., Gao, L., & Zhang, S. (2014). Methane Catalytic Cracking to Make Hydrogen and Graphitic Nano Carbons (Nanotubes, Microfibers, Microballs, Onions) with Zero Emission. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 44 (8), 1166–1174. https://doi.org/10.1080/15533174.2013.797452
- Al-Fatesh, A.S., Abdelkader, A., Osman, A. I., Lanre, M. S., Fakeeha, A. H., Alhoshan, M., … & Rooney, D. W. (2023). Non-supported Bimetallic Catalysts of Fe and Co for Methane Decomposition into H2 and a Mixture of Graphene Nanosheets and Carbon Nanotubes. Int. J. of Hydrogen Energy, 48 (68), 26506–26517. https://doi.org/10.1016/j.ijhydene.2022.10.223