Have a personal or library account? Click to login
Investigation of Fe-Ni Catalyst Drying Influence on Methane Pyrolysis for Turquoise Hydrogen Production Cover

Investigation of Fe-Ni Catalyst Drying Influence on Methane Pyrolysis for Turquoise Hydrogen Production

Open Access
|Dec 2025

References

  1. European Commission. (2020). Hydrogen Strategy for a Climate-Neutral Europe, COM(2020) 301 Final. Brussels. Available at https://energy.ec.europa.eu/system/files/2020-07/hydrogen_strategy_0.pdf
  2. Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, O. E., Ekins, P., … & Ward, K. R. (2019). The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy & Environmental Science, 12, 463–491. https://doi.org/10.1039/C8EE01157E
  3. Phogat, P., Chand, B., & Shreya. (2025). Hydrogen Economy: Pathways, Production Methods, and Applications for a Sustainable Energy Future. Sustainable Materials and Technologies, 45. https://doi.org/10.1016/j.susmat.2025.e01550
  4. Abánades, H., Rubbia, C., & Salmieri, D. (2013). Thermal Cracking of Methane into Hydrogen for a CO2-Free Utilization of Natural Gas. Int. J. of Hydrogen Energy., 38 (20), 8491–8496. https://doi.org/10.1016/j.ijhydene.2012.08.138
  5. Swartbooi, A., Kapanji-Kakoma, K. K., & Musyoka, N. M. (2022). From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons. Sustainability, 14 (17), 11050. https://doi.org/10.3390/su141711050
  6. Bayat, N., Rezaei, M., & Meshkani, F. (2016). Methane Decomposition over Ni–Fe/Al2O3 Catalysts for Production of COx-Free Hydrogen and Carbon Nanofiber. Int. J. of Hydrogen Energy, 41 (3), 1574–1584. https://doi.org/10.1016/j.ijhydene.2015.10.053
  7. Wang, P., Zhu, H., Huang, M., Wan, C., Li, D., & Jiang, L. (2022). Catalytic Methane Decomposition to Hydrogen and Carbon over Hydrotalcite-Derivative Composition-Uniform and Sintering-Resistant Ni-Fe/Al2O3 Alloy Catalysts. Int. J. Energy Res., 46, 16810–16822. https://doi.org/10.1002/er.8349
  8. Karaismailoğlu, M., Figen, H. E., & Baykara, S. Z. (2020). Methane Decomposition over Fe-based Catalysts. Int. J. Hydrogen Energy, 45 (60), 34773–34782. https://doi.org/10.1016/j.ijhydene.2020.07.219
  9. Khaleel, A., Adamson, A., & Pillantakath, A.-R. (2024). The Impact of Surface-Impregnated versus Support-Dispersed Fe in Fe–Ni/γ-Al2O3 Catalysts for Partial Oxidation of Methane: Insights into the Effect of Fe Incorporation Method on Coking and on the Reaction Mechanism. Int. J. Hydrogen Energy, 81, 643–653. https://doi.org/10.1016/j.ijhydene.2024.07.191
  10. Esteves, L. M., Daas, A. A., Oliveira, H. A., & Passos, F. B. (2020). Effect of Catalyst Pretreatment on Ni-based Catalysts for Methane Decomposition. Int. J. Hydrogen Energy, 45 (51), 27299–27311. https://doi.org/10.1016/j.ijhydene.2020.07.133
  11. Azancot, L., Bobadilla, L. F., Santos, J. L., Cordoba, J. M., Centeno, M. A., & Odriozola, J. A. (2019). Influence of the Preparation Method in the Metal-Support Interaction and Reducibility of Ni-Mg-Al Based Catalysts for Methane Steam Reforming. Int. J. Hydrogen Energy, 44 (36). 19827–19840. https://doi.org/10.1016/j.ijhydene.2019.05.167
  12. Laybo, D., Etim, U. J., Monai, M., Bare, S. R., Zhong, Z., & Vogt, C. (2024). Metal–Support Interactions in Metal Oxide-Supported Atomic, Cluster, and Nanoparticle Catalysis. Chem. Soc. Rev., 53, 10450–10490. https://doi.org/10.1039/D4CS00527A
  13. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B, 61, 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095
  14. El-Maghraby, A., El-Deeb, H. A., & Khattab, M. A. (2015). Influence of FeNi/Al2O3 Catalyst Compositions on the Growth of Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures 23 (1). https://doi.org/10.1080/1536383X.2012.702159
  15. Shekhar, S., Tripathi, K., Karton, A., Roy, S., Joshi, R., & Pant, K. K. (2025). Influence of Ni on Carbon Nanotube Production with Fe-based Catalysts. Chem. Commun., 61, 2063–2066. https://doi.org/10.1039/D4CC05698A
  16. Sun, E., Zhai, S., Kim, D., Gigantino, M., Haribal, V., Dewey, O. S., … & Majumdar, A. (2023). A Semi-Continuous Process for Co-production of CO2-Free Hydrogen and Carbon Nanotubes via Methane Pyrolysis. Cell Reports Physical Science, 4 (4), 101338. https://doi.org/10.1016/j.xcrp.2023.101338
  17. Wang, I. W., Kutteri, D. A., Gao, B., Tian, H., & Hu, J. (2019). Methane Pyrolysis for Carbon Nanotubes and COx -Free H2 over Transition-Metal Catalysts. Energy and Fuels, 33 (1), 197–205. https://doi.org/10.1021/acs.energyfuels.8b03502
  18. Wang, D., Zhang, J., Sun, J., Gao, W., & Cui, Y. (2019). Effect of Metal Additives on the Catalytic Performance of Ni/Al2O3 Catalyst in Thermocatalytic Decomposition of Methane. Int. J. of Hydrogen Energy, 44 (14), 7205–7215. https://doi.org/10.1016/j.ijhydene.2019.01.272
  19. Zhang, W., Gao, L., Zhang, M., Cui, J., Li, Y., Gao, L., & Zhang, S. (2014). Methane Catalytic Cracking to Make Hydrogen and Graphitic Nano Carbons (Nanotubes, Microfibers, Microballs, Onions) with Zero Emission. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 44 (8), 1166–1174. https://doi.org/10.1080/15533174.2013.797452
  20. Al-Fatesh, A.S., Abdelkader, A., Osman, A. I., Lanre, M. S., Fakeeha, A. H., Alhoshan, M., … & Rooney, D. W. (2023). Non-supported Bimetallic Catalysts of Fe and Co for Methane Decomposition into H2 and a Mixture of Graphene Nanosheets and Carbon Nanotubes. Int. J. of Hydrogen Energy, 48 (68), 26506–26517. https://doi.org/10.1016/j.ijhydene.2022.10.223
DOI: https://doi.org/10.2478/lpts-2025-0041 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 16
Published on: Dec 6, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 A. Knoks, L. Grinberga, R. K. Sika, V. Vitola, S. Varnagiris, M. Urbonavicius, J. Kleperis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.