Have a personal or library account? Click to login
ZnO-Thin Film Growth Processes: Correlation Between the Structural Properties of Hydrochloric Acid (HCl) and Water (H2O) Solution Effect Using Innovative Electrostatic Spray Deposition (ESd) Technology Cover

ZnO-Thin Film Growth Processes: Correlation Between the Structural Properties of Hydrochloric Acid (HCl) and Water (H2O) Solution Effect Using Innovative Electrostatic Spray Deposition (ESd) Technology

By:
Open Access
|May 2025

References

  1. Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., &amp; Segawa. Y. (1998). Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films. <em>Appl. Phys. Lett., 72</em> (25), 3270–3272. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.121620" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.121620</a>">https://doi.org/10.1063/1.121620</ext-link>
  2. Kind, H., Yan, H., Law, M., Messer, B., &amp; Yang, P. (2002). Nanowire Ultraviolet Photodetectors and Optical Switches. <em>AdV. Mater., 14</em> (2), 158–160.
  3. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/1521-4095(20020116)14:2&lt" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/1521-4095(20020116)14:2&lt</a>;158::AID-ADMA158&gt;3.0.CO;2-W">https://doi.org/10.1002/1521-4095(20020116)14:2&lt;158::AID-ADMA158&gt;3.0.CO;2-W</ext-link>
  4. Yin, M., Gu, Y., Kuskovsky, I. L., Andelman, T., Zhu, Y., Neumark, G. F., &amp; O’Brien, S. (2004). Zinc Oxide Quantum Rods. <em>J. Am. Chem. Soc., 126</em> (20), 6206–6207. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ja031696+" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ja031696+</a>">https://doi.org/10.1021/ja031696+</ext-link>
  5. Wu, D., Huang, L. D., Wang, Q. J., Zhao, X. N., Li, A. D., Chen, Y. F., &amp; Ming, N. (2005). Bell-Mouthed Single-Crystalline Tubular ZnO Prepared by a Soft Solution Method. <em>Mater. Chem. Phys., 96</em> (1), 51–54. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.matchemphys.2005.04.059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matchemphys.2005.04.059</a>">https://doi.org/10.1016/j.matchemphys.2005.04.059</ext-link>
  6. Fan, H. J., Scholz, R., Kolb, F. M., Zacharias, M., &amp; Gosele, U. (2004). Growth Mechanism and Characterization of Zinc Oxide Microcages. <em>Solid State Commun., 130</em> (8), 517–521. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ssc.2004.03.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ssc.2004.03.014</a>">https://doi.org/10.1016/j.ssc.2004.03.014</ext-link>
  7. Zhang, W. H., Shi, J. L., Wang, L. Z., &amp; Yan, D. S. (2000). Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. <em>Chem. Mater., 12</em> (5), 1408–1413. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/cm990740a" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/cm990740a</a>">https://doi.org/10.1021/cm990740a</ext-link>
  8. Gao, P. X., Ding, Y., &amp; Wang, Z. L. (2003). Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst. <em>Nano Letters</em>, <em>3</em> (9), 1315–1320. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/nl034548q" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/nl034548q</a>">https://doi.org/10.1021/nl034548q</ext-link>
  9. Ada, K., Goekgoez, M., Oenal, M., &amp; Sankaya, Y. (2008). Preparation and Characterization of a ZnO Powder with the Hexagonal Plate Particles. <em>Powder Technology</em>, <em>181</em>, 285–291. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.powtec.2007.05.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.powtec.2007.05.015</a>">https://doi.org/10.1016/j.powtec.2007.05.015</ext-link>
  10. Thomas, D. G. (1960). The Exciton Spectrum of Zinc Oxide. <em>J. Phys. Che. Solids</em>, <em>15</em> (1–2), 86–96. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0022-3697(60)90104-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0022-3697(60)90104-9</a>">https://doi.org/10.1016/0022-3697(60)90104-9</ext-link>
  11. Nakai, H., Sugiyama, M., &amp; Chichibu, S. F. (2017). Ultraviolet Light-Absorbing and Emitting Diodes Consisting of a p-Type Transparent-Semiconducting NiO Film Deposited on an n-Type GaN Homoepitaxial Layer. <em>Appl. Phys. Letter, 110</em> (18), 181102(1–5). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.4982653" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.4982653</a>">https://doi.org/10.1063/1.4982653</ext-link>
  12. Dutta, T., Gupta, P., Gupta, J., &amp; Narayan, J. (2010). Effect of Li Doping in NiO Thin Films on its Transparent and Conducting Properties and its Application in Heteroepitaxial p-n Junctions. <em>J. Appl. Phys.</em>, <em>108</em> (8), 083715 (1–7). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.3499276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.3499276</a>">https://doi.org/10.1063/1.3499276</ext-link>
  13. Xia, X. H., Tu, J. P., Zhang, J., Wang, X. L., Zhang, W. K., &amp; Huang, H. (2008). Morphology Effect on the Electrochromic and Electrochemical Performances of NiO Thin Films, <em>Elec. Acta, 53</em> (18), 5721–5724. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.electacta.2008.03.047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.electacta.2008.03.047</a>">https://doi.org/10.1016/j.electacta.2008.03.047</ext-link>
  14. Cloupeau, M., &amp; Prunet-Foch, B. (1989). Electrostatic Spraying of Liquids in Cone–Jet Mode. <em>J. Electrostat.</em>, <em>22</em> (2), 135–159. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0304-3886(89)90081-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0304-3886(89)90081-8</a>">https://doi.org/10.1016/0304-3886(89)90081-8</ext-link>
  15. Jung, J. H., Oh, H., &amp; Kim, S. S. (2010). Numerical Simulation of the Deposition Pattern in Multiple Electrohydrodynamic Spraying. <em>Powder Technol., 198</em> (3), 439–444. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.powtec.2009.12.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.powtec.2009.12.006</a>">https://doi.org/10.1016/j.powtec.2009.12.006</ext-link>
  16. Tomono, K., &amp; Sugiyama, M. (2024). Investigating Electrical Properties and Crystal Growth in NiO Thin Films by Spray Pyrolysis and Electrostatic Spray Deposition. <em>J. J. A. Physics, 63</em>, 025504(1–5). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.35848/1347-4065/ad1f09" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.35848/1347-4065/ad1f09</a>">https://doi.org/10.35848/1347-4065/ad1f09</ext-link>
  17. Abbas, F. I., &amp; Sugiyama, M. (2024). A Comparative Study of Property Measurement for ZnO-Thin Film Growth Processes Using Hydrocloric Acid (HCl) and Water (H2O) Solution-Dependent on Novel Electrostatic Spray Deposition (ESD). <em>Lat. Jour. Phy. Tec. Sciences, 62</em> (2), 30–41.
  18. Kumar, V., Sharma, H., Singh, S. K., Kumar, S., &amp; Vij, A. (2019). Enhanced Near-Band Edge Emission in Pulsed Laser Deposited ZnO/c-Sapphire Nanocrystalline Thin Films. <em>App. Physics A</em>, <em>125,</em> 212 (1–7). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00339-019-2485-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00339-019-2485-0</a>">https://doi.org/10.1007/s00339-019-2485-0</ext-link>
  19. Singh, S. K., &amp; Singhal, R. (2018). Thermal-Induced SPR Tuning of Ag-ZnO Nanocomposite Thin Film for Plasmonic Applications. <em>Appl. Surf. Sci., 439</em>, 919–926. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apsusc.2018.01.112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsusc.2018.01.112</a>">https://doi.org/10.1016/j.apsusc.2018.01.112</ext-link>
  20. Gondal, M. A., Drmosh, Q. A., Yamani, Z. H., &amp; Saleh, T. A. (2009). Synthesis of ZnO2 Nanoparticles by Laser Ablation in Liquid and their Annealing Transformation into ZnO Nanoparticles. <em>Appl. Surf. Science</em>, <em>256</em> (1), 298–304. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apsusc.2009.08.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsusc.2009.08.019</a>">https://doi.org/10.1016/j.apsusc.2009.08.019</ext-link>
  21. Pal, U., Serrano, J. G., Santiago, P., Xiong, G., Ucer, K. B., &amp; Williams, R. T. (2006). Synthesis and Optical Properties of ZnO Nanostructures with Different Morphologies. <em>Optical Materials</em>, <em>29</em> (1), 65–69. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.optmat.2006.03.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.optmat.2006.03.015</a>">https://doi.org/10.1016/j.optmat.2006.03.015</ext-link>
  22. Modwi, A., Abbo, M. A., Hassan, E. A., Taha, K. K., Khezami, L., &amp; Houas, A. (2016). Influence of Annealing Temperature on the Properties of ZnO Synthesized via 2.3. Dihydroxysuccinic Acid Using Flash Sol-Gel Method. <em>J. Ovo. Research, 12</em> (2), 59–66.
  23. Thool, G. S., Singh, A. K., Singh, R. S., Gupta, A., &amp; Susan, M. A. B. H. (2014). Facile Synthesis of Flat Crystal ZnO Thin Films by Solution Growth Method: A Micro-Structural Investigation. <em>Jou. Sau. Chem. Society, 18</em>, 712–721. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apsusc.2018.01.112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsusc.2018.01.112</a>">https://doi.org/10.1016/j.apsusc.2018.01.112</ext-link>
DOI: https://doi.org/10.2478/lpts-2025-0023 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 68 - 76
Published on: May 27, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 F. I. Abbas, M. Sugiyama, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.