Have a personal or library account? Click to login
Compression of Hydrogen Gas for Energy Storage: A Review Cover

Compression of Hydrogen Gas for Energy Storage: A Review

Open Access
|Apr 2023

References

  1. International Energy Agency (n.d.). Available at https://www.iea.org/.
  2. European Commission. (n.d.). A European Green Deal Available at https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en/.
  3. Kim, M. S., Jeon, H. K., Lee, K. W., Ryu, J. H., & Choi, S. W. (2022). Analysis of Hydrogen Filling of 175 Liter Tank for Large-Sized Hydrogen Vehicle. Appl. Sci., 12 (10), 4856. doi: 10.3390/app12104856.
  4. Xue, L., Deng, J., Wang, X., Wang, Z., & Liu, B. (2022). Numerical Simulation and Optimization of Rapid Filling of High-Pressure Hydrogen Storage Cylinder. Energies, 15 (14), 2022. doi: 10.3390/en15145189.
  5. Zhao, B., Wei, H., Peng, X., Feng, J., & Jia, X. (2022). Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank. Energies, 15 (10). doi: 10.3390/en15103811.
  6. Heitsch, M., Baraldi, D., Moretto, P., & Heitschec, M. E. (2009). Simulation of the Fast Filling of Hydrogen Tanks. Proc. 3rd Int. Conf. Hydrog. Saf. (ICHS 3), 1–12, [Online]. Available at https://h2tools.org/sites/default/files/2019-08/SimulationoftheFastFillingofHydrogenTanks.pdf.
  7. Li, M., Bai, Y., Zhang, C., & Song, Y. (2019). Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle. Int. J. Hydrogen Energy, 44 (21), 10677–10693. doi: 10.1016/j.ijhydene.2019.02.208.
  8. Melideo, D., Baraldi, D., Acosta-Iborra, B., Ortiz Cebolla, R., & Moretto, P. (2017). CFD Simulations of Filling and Emptying of Hydrogen Tanks. Int. J. Hydrogen Energy, 42 (11), 7304–7313. doi: 10.1016/j.ijhydene.2016.05.262.
  9. Gonin, R., Horgue, P., Guibert, R., Fabre, D., Bourguet, R., Ammouri, F., & Vyazmina E. (2022). A Computational Fluid Dynamic Study of the Filling of a Gaseous Hydrogen Tank under Two Contrasted Scenarios. Int. J. Hydrogen Energy, 47 (55), 23278–23292. doi: 10.1016/j.ijhydene.2022.03.260.
  10. Sdanghi, G., Maranzana, G., Celzard, A., & Fierro V. (2020). Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities. Energies, 13 (12). doi: 10.3390/en13123145.
  11. Biaek, A., Bielawski, P., & Lotos, G. S. A. (2018). Failure Analysis of Refinery Hydrogen Reciprocating Compressors. Diagnostyka, 19 (1), 83–92. doi: 10.29354/diag/82961.
  12. Navarro, E., Granryd, E., Urchueguía, J. F., & Corberán, J. M. (2007). A Phenomenological Model for Analyzing Reciprocating Compressors. Int. J. Refrig., 30 (7), 1254–1265. doi: 10.1016/j.ijrefrig.2007.02.006.
  13. ISO. ISO 15869. This Standard Specifies Requirements for High-Pressure Hydrogen Storage Vessels, Including Design, Manufacture, Inspection, Testing, and Certification. Available at https://www.iso.org/standard/52871.html.
  14. Energy. (n.d.). Hydrogen Storage. Available at https://www.energy.gov/eere/fuelcells/hydrogen-storage.
  15. ISO. (2019). ISO 14687:2019. Hydrogen Fuel Quality — Product Specification. Available at https://www.iso.org/standard/69539.html.
  16. ISO. (2015). ISO/TR 15916:2015. Basic Considerations for the Safety of Hydrogen Systems. Available at https://www.iso.org/standard/56546.html.
  17. Sdanghi, G., Maranzana, G., Celzard, A., & Fierro, V. (2018). Review of the Current Technologies and Performances of Hydrogen Compression for Stationary and Automotive Applications. Renew. Sustain. Energy Rev., 102, 150–170. doi: 10.1016/j.rser.2018.11.028.
  18. Wang, T., Jia, X., Li, X., Ren, S., & Peng, X. (2020). Thermal-Structural Coupled Analysis and Improvement of the Diaphragm Compressor Cylinder Head for a Hydrogen Refueling Station. Int. J. Hydrogen Energy, 45 (1), 809–821. doi: 10.1016/j.ijhydene.2019.10.199.
  19. Jia, X., Chen, J., Wu, H., & Peng, X. (2016). Study on the Diaphragm Fracture in a Diaphragm Compressor for a Hydrogen Refueling Station. Int. J. Hydrogen Energy, 41 (15), 6412–6421. doi: 10.1016/j.ijhydene.2016.02.106.
  20. Li, X., Chen, J., Wang, Z., Jia, X., & Peng, X. (2019). A Non-Destructive Fault Diagnosis Method for a Diaphragm Compressor in the Hydrogen Refueling Station. Int. J. Hydrogen Energy, 44 (44), 24301–24311. doi: 10.1016/j.ijhydene.2019.07.147.
  21. Wennemar J. (2009). Dry Screw Compressor Performance and Application Range. 156 Proc. of Thirty-Eighth Turbomach. Symp. (pp. 149–156).
  22. Di Bella, F. A. (2015). Development of a Centrifugal Hydrogen Pipeline Gas Compressor. Available: https://www.osti.gov/biblio/1227195-development-centrifugal-hydrogen-pipeline-gas-compressor.
  23. Wang, H., Yang, D., Zhu, Z., Zhang, H., & Zhang, Q. (2023). Effect of Interstage Pipeline on the Performance of Two-Stage Centrifugal Compressors for Automotive Hydrogen Fuel Cells. Appl. Sci., 13 (1). doi: 10.3390/app13010503.
  24. Lototskyy, M.V., Yartys, V.A., Pollet, B.G., & Bowman, R.C. (2014). Metal Hydride Hydrogen Compressors: A Review. Int. J. Hydrogen Energy, 39 (11), 5818–5851. doi: 10.1016/j.ijhydene.2014.01.158.
  25. Peng, Z., Li., Q., Ouyang, L., Jiang, W., Chen, K., Wang, H., … & Zhu, M. (2022). Overview of Hydrogen Compression Materials Based on a Three-Stage Metal Hydride Hydrogen Compressor. J. Alloys Compd., 895, 162465. doi: 10.1016/j.jallcom.2021.162465.
  26. Stamatakis, E., Zoulias, E., Tzamalis, G., & Massina, Z. (2018). Metal Hydride Hydrogen Compressors: Current Developments and Early Markets. Renew. Energy, 127, 850–862. doi: 10.1016/j.renene.2018.04.073.
  27. Muthukumar, P., Maiya, M. P., & Murthy, S. S. (2005) Experiments on a Metal Hydride Based Hydrogen Compressor. Int. J. Hydrogen Energy, 30 (8), 879–892. doi: 10.1016/j.ijhydene.2004.09.003.
  28. Laurencelle, F., Dehouche, Z., Morin, F., & Goyette, J., (2009). Experimental Study on a Metal Hydride Based Hydrogen Compressor. J. Alloys Compd., 475, (1–2), 810–816. doi: 10.1016/j.jallcom.2008.08.007.
  29. Marciuš, D., Kovač, A., & Firak, M. (2022) Electrochemical Hydrogen Compressor: Recent Progress and Challenges. Int. J. Hydrogen Energy, 47 (57), 24179–24193. doi: 10.1016/j.ijhydene.2022.04.134.
  30. Bampaou, M., Panopoulos, K. D., Papadopoulos, A. I., Seferlis, P., & Voutetakis, S. (2018). An Electrochemical Hydrogen Compression Model. Chem. Eng. Trans., 70, 1213–1218. doi: 10.3303/CET1870203.
  31. Nordio M., Rizzi, F., Manzolini, G., Mulder, M., Raymaker, L., Van Sint Annaland, M., & Gallucci, F. (2018). Experimental and Modelling Study of an Electrochemical Hydrogen Compressor. Chem. Eng. J., 369, 432–442. doi: 10.1016/j.cej.2019.03.106.
  32. Stefan, M. (2014). Linde Pioneers Hydrogen Compression Techniques for Fuel Cell Electric Vehicles. Fuel Cells Bulletin, 2014 (9), 12–15.
  33. Ströbel, R., Oszcipok, M., Fasil, M., Rohland, B., Jörissen, L., & Garche, J. (2002). The Compression of Hydrogen in an Electrochemical Cell Based on a PE Fuel Cell Design. J. Power Sources, 105 (2), 208–215. doi: 10.1016/S0378-7753(01)00941-7.
  34. Bezrukovs, V., Bezrukovs, V., Konuhova, M., Bezrukovs, D., & Berzins, A. (2022). Hydrogen Hydraulic Compression System for Refuelling Stations. Latv. J. Phys. Tech. Sci., 59 (3), 96–105. doi: 10.2478/lpts-2022-0028.
  35. Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Orlova, S., Konuhova, M., Berzins. A., … & Pranskus, P. (2021). Hydrogen Hydraulic Compression Device. PCT/IB2021/058102.
  36. Viktorsson, L., Heinonen, J. T., Skulason, J. B., & Unnthorsson, R. (2017). A Step Towards the Hydrogen Economy - A Life Cycle Cost Analysis of a Hydrogen Refueling Station. Energies, 10 (6), 1–15. doi: 10.3390/en10060763.
  37. Tang, O., Rehme, J., & Cerin, P. (2022). Levelized Cost of Hydrogen for Refueling Stations with Solar PV and Wind in Sweden: On-Grid or Off-Grid?,” Energy, 241, 122906. doi: 10.1016/j.energy.2021.122906.
  38. Correa, G., Volpe, F., Marocco, P., Muñoz, P., Falagüerra, T., & Santarelli, M. (2022). Evaluation of Levelized Cost of Hydrogen Produced by wind Electrolysis: Argentine and Italian Production Scenarios. J. Energy Storage, 52. doi: 10.1016/j.est.2022.105014.
DOI: https://doi.org/10.2478/lpts-2023-0007 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 4 - 16
Published on: Apr 15, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 S. Orlova, N. Mezeckis, V. P. K. Vasudev, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.