Have a personal or library account? Click to login
Analysis of Test Results of the Developed Synchronous Reluctance Motor for Public Transport Application Cover

Analysis of Test Results of the Developed Synchronous Reluctance Motor for Public Transport Application

Open Access
|Aug 2022

References

  1. 1. Moghaddam, R. R., Nategh, S., Islam, J., & Boglietti, A. (2020). Different traction motor topologies used in e-mobility: Part II: Magnet-based solutions. In 2020 International Conference on Electrical Machines (ICEM), (pp. 138–143). 23 August 2020, Gothenburg.10.1109/ICEM49940.2020.9270938
  2. 2. Hamidizadeh, S., Alatawneh, N., Chromik, R. R., & Lowther, D. A. (2016). Comparison of Different Demagnetization Models of Permanent Magnet in Machines for Electric Vehicle Application. IEEE Transactions on Magnetics, 52 (5), 1–4.10.1109/TMAG.2015.2513067
  3. 3. Jeong, G., Kim, H., & Lee, J. (2020). A Study on the Design of IPMSM for Reliability of Demagnetization Characteristics-Based Rotor. IEEE Transactions on Applied Superconductivity, 30 (4), 1–5.10.1109/TASC.2020.2982890
  4. 4. de Pancorbo, S. M., Ugalde, G., Poza, J., & Egea, A. (2015). Comparative study between induction motor and Synchronous Reluctance Motor for electrical railway traction applications. In 2015 5th International Electric Drives Production Conference (EDPC), (1560040). 15–16 September 2015, Nuremberg, Germany.10.1109/EDPC.2015.7323219
  5. 5. Jurca, F. N., Mircea, R., Martis, C., Martis, R., & Florin, P. P. (2014). Synchronous reluctance motors for small electric traction vehicle. In 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), (pp. 1–5). 4 December 2014, Iasi.10.1109/ICEPE.2014.6969920
  6. 6. Jurca, F. N., Ruba, M., & Marţiş, C. (2016). Design and control of synchronous reluctances motors for electric traction vehicle. In 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 22–24 June 2016, Capri, Italy.10.1109/SPEEDAM.2016.7525824
  7. 7. Riley, C. P., Bedford, A. M., Topping, P. J., Reeve, J. M., Wale, J. D., Venskus, A. … & Ilea, D. (2014). Simulation based design of reluctance motors for traction applications in hybrid and electric vehicles. In 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014). 4 August 2014, Manchester.10.1049/cp.2014.0316
  8. 8. ABB. (2019). Low Voltage IE5 Synchronous Reluctance Motors. Available at http://new.abb.com
  9. 9. SIEMENS AG. (2019). SIMOTICS Reluctance Motor with SINAMICS Frequency Converters. Available at http://www.industry.siemens.com
  10. 10. Vagati, A., Pastorelli, M., Franceschini, G., & Petrache, S.C. (1998). Design of Low-Torque-Ripple Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 34 (4), 758–765.10.1109/28.703969
  11. 11. Lipo, T. A., & Matsuo, T. (1994). Rotor Design Optimization of Synchronous Reluctance Machine. IEEE Transaction on Energy Conversion, 9 (2), 359–365.
  12. 12. Orlova, S., Vezzini, A., & Pugachov, V. (2015). Analysis of parameters for optimal design of synchronous reluctance motor. In 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 14 October 2015, Riga, Latvia. doi:10.1109/RTUCON.2015.7343178
  13. 13. Orlova, S., Pugachov, V., Rassõlkin, A., Kallaste, A., & Vaimann, T. (2019). Design of rotors for synchronous reluctance motor: Analytical treatment and optimization. In 21st European Conference on Power Electronics and Applications (EPE ‹19 ECCE Europe), (pp. 1–9). 3–5 September 2019, Genova, Italy.10.23919/EPE.2019.8914760
  14. 14. Boldea, I. (1996). Reluctance Synchronous Machines and Drives. Oxford: Clarendon Press.
  15. 15. Boldea, I., & Nasar, S. A. (2009). The Induction Machines Design Handbook (2nd ed.). USA: CRC Press.10.1201/9781420066692
  16. 16. Pyrhonen, J., Jokinen T., & Hrabovcova V. (2008). Design of Rotating Electrical Machines. John Wiley & Sons.10.1002/9780470740095
  17. 17. Kопылов, И.П. (1986). Электрических машины. М.: Энергоатомиздат.
  18. 18. Kolehmainen, J. (2010). Synchronous Reluctance Motor with Form Blocked Rotor. IEEE Trans. Energy Convers., 25 (2), 450–456.10.1109/TEC.2009.2038579
  19. 19. Gulbis, K., Kamoliņš, E., & Brakanskis, U. (2016). Synchronous reluctance machine with improved design of rotor mechanical strength connections. In 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE 2016), (pp. 97–101). 10–12 November 2016, Lithuania, Vilnius.10.1109/AIEEE.2016.7821820
  20. 20. Gulbis, K., Kamoliņš, E., Brakanskis, U., & Zarembo, J. (2020). Parameter calculation method of synchronous reluctance motor including cross magnetic saturation. In 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 5–7 November 2020, Riga, Latvia.10.1109/RTUCON51174.2020.9316606
  21. 21. Rashad, E. M., Radwan, T. S., & Rahman, M. A. (2004). A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses. In 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting, (pp. 2411–2417). Seattle, WA, USA, doi: 10.1109/IAS.2004.1348813.
DOI: https://doi.org/10.2478/lpts-2022-0032 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 36 - 52
Published on: Aug 17, 2022
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 K. Gulbis, U. Brakanskis, E. Kamolins, M. Gorobecs, A. Potapovs, K. Sejejs, J. Zarembo, V. Burenin, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.