References
- Amirizaniani, M., Martin, E., Sivachenko, M. et al., 2024, October. Can LLMs reason like humans? Assessing theory of mind reasoning in LLMs for open-ended questions. In: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, pp. 34–44.
- Anderwald, L., 2018. Language change and cultural change: The grammaticalization of the GET-passive in context. Language & Communication, 62, 1–14. Aslan, S., 2023. A deep learning-based sentiment analysis approach (MF-CNN-BILSTM) and topic modeling of tweets related to the Ukraine–Russia conflict. Applied Soft Computing, 143, 110404, available at: https://doi.org/10.1016/j.asoc.2023.110404.
- Barbieri, F., Espinosa Anke, L., Camacho-Collados, J., 2022. XLM-T: Multilingual language models in Twitter for sentiment analysis and beyond. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, European Language Resources Association, pp. 258–266, available at: https://aclanthology.org/2022.lrec-1.27.
- Boroditsky, L., 2011. How language shapes thought. Scientific American, 304(2), 62–65.
- Boyd, D. M., Ellison, N. B., 2007. Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210–230, available at: https://doi.org/10.1111/j.1083-6101.2007.00393.x.
- Bose, R., Dey, R. K., Roy, S., Sarddar, D., 2020. Sentiment analysis on online product reviews. In: Tuba, M., Akashe, S., Joshi, A. (Eds.), Information and Communication Technology for Sustainable Development (Advances in Intelligent Systems and Computing, Vol. 933). Singapore: Springer, pp. 559–569, available at: https://doi.org/10.1007/978-981-13-7166-0_56.
- Dahlberg, G. M., Bagga-Gupta, S., 2014. Understanding global learning spaces: An empirical study of languaging and transmigrant positions in the virtual classroom. Learning, Media and Technology, 39(4), 468–487, available at: https://doi.org/10.1080/17439884.2014.931868.
- Ellison, N., Steinfield, C., Lampe, C., 2007. The benefits of Facebook “friends”: Exploring the relationship between college students’ use of online social networks and social capital. Journal of Computer-Mediated Communication, 12(3), article 1, available at: http://jcmc.indiana.edu/vol12/issue4/ellison.html.
- Field, J., 2004. Psycholinguistics: The key concepts. Routledge.
- Flek, L., 2020. Returning the N to NLP: Towards contextually personalized classification models. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7828– 7838, available at: https://doi.org/10.18653/v1/2020.acl-main.700.
- Havaldar, S., Singhal, B., Rai, S. et al., 2023, July. Multilingual language models are not multicultural: A case study in emotion. In: Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Association for Computational Linguistics, pp. 202–214, available at: https://doi.org/10.18653/v1/2023.wassa-1.19.
- Hassonah, M. A., Al-Sayyed, R., Rodan, A. et al., 2020. An efficient hybrid filter and evolutionary wrapper approach for sentiment analysis of various topics on Twitter. Knowledge-Based Systems, 192, 105353, available at: https://doi.org/10.1016/j.knosys.2019.105353.
- Hordiienko, K., 2024. AI and human sentiment analysis with cultural aspect. Poster presented at the 21st International Congress of Linguists, Poznań, Poland. Hordiienko, K., 2021. Moral disengagement as a factor of cyberbullying among students. Habitus, (29), 147–151, retrieved from: http://nbuv.gov.ua/UJRN/habit_2021_29_27.
- Hordiienko, K., Joukl, Z., 2023, August 11–20. Sentiment analysis of different nationalities’ internet comments on extraordinary news: cultural aspect. České Budějovice, Czech Republic: Summer School of Linguistics, retrieved from: https://ssol.ff.cuni.cz/summer-school-of-linguistics/ssol-2023/.
- Hordiienko, K., Joukl, Z., 2024. Sentimental reflection of global crises: Czech and Ukrainian views on popular events through the prism of internet commentary. Jazykovedný Časopis, 75(1), 43–61, available at: https://doi.org/10.2478/jazcas-2024-0027.
- Hung, L. P., Alias, S., 2023. Beyond sentiment analysis: A review of recent trends in text-based sentiment analysis and emotion detection. Journal of Advanced Computational Intelligence and Intelligent Informatics, 27(1), 84–95, available at: https://doi.org/10.20965/jaciii.2023.p0084.
- Hunston, S., 2010. Corpus approaches to evaluation: Phraseology and evaluative language. Routledge.
- Karakikes, A., Alexiadis, P., Kotis, K., 2024. Bias in X (Twitter) and Telegram-Based Intelligence Analysis: Exploring Challenges and Potential Mitigating Roles of AI. SN Computer Science, 5(5), 574, available at: https://doi.org/10.1007/s42979-024-02935-w.
- Kheiri, K., Karimi, H., 2023. SentimentGPT: Exploiting GPT for advanced sentiment analysis and its departure from current machine learning. arXiv preprint, arXiv:2307.10234.
- Krippendorf, K., 2004. Content analysis: An introduction to its methodology. Sage Publications. Krishnamoorthy, S., 2018. Sentiment analysis of financial news articles using performance indicators. Knowledge and Information Systems, 56(2), 373–394, available at: https://doi.org/10.48550/arXiv.1811.11008.
- Krugmann, J. O., Hartmann, J., 2024. Sentiment analysis in the age of generative AI. Customer Needs and Solutions, 11(3), available at: https://doi.org/10.1007/s40547-024-00143-4.
- Liu, B., 2012. Sentiment analysis and opinion mining. Morgan & Claypool Publishers, available at: https://doi.org/10.2200/S00416ED1V01Y201204HLT016.
- Liu, B., Zhang, L., 2012. A survey of opinion mining and sentiment analysis. In: Aggarwal, C. C., Zhai, C. (Eds.), Mining text data. Springer, pp. 415–463, available at: https://doi.org/10.1007/978-1-4614-3223-4_13.
- Mao, Y., Liu, Q., Zhang, Y., 2024. Sentiment analysis methods, applications, and challenges: A systematic literature review. Journal of King Saud University – Computer and Information Sciences, 36(4), Article 102048, available at: https://doi.org/10.1016/j.jksuci.2024.102048.
- Martin, J. R., White, P. R., 2005. The language of evaluation, vol. 2. Basingstoke: Palgrave Macmillan.
- Matlach, V., 2023. Úvod do zpracování dat 1 [Introduction to data processing 1]. Olomouc: Univerzita Palackého v Olomouci, VUP.
- Medhat, W., Hassan, A., Korashy, H., 2014. Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113, available at: https://doi.org/10.1016/j.asej.2014.04.011.
- Müngen, A. A., Aygün, İ., Kaya, M., 2020. Finding the relationship between news and social media users’ emotions in the COVID-19 process. Sakarya University Journal of Computer and Information Sciences, 3(3), 250–263, available at: https://doi.org/10.35377/saucis.03.03.830867.
- Nemesh, O. M., 2017. Virtual activity of personality: Structure and dynamics of psychological content. Slovo.
- Pang, B., Lee, L., 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.
- Pavitha, N., Pungliya, V., Raut, A. et al., 2022. Movie recommendation and sentiment analysis using machine learning. Global Transitions Proceedings, 3(1), 279–284, available at: https://doi.org/10.1016/j.gltp.2022.03.012.
- Pomytkina, L., Podkopaieva, Y., Hordiienko, K., 2021. Peculiarities of manifestation of student youth’ roles and positions in the cyberbullying process. International Journal of Modern Education and Computer Science, 13(6), 1–10, available at: https://doi.org/10.5815/ijmecs.2021.06.01.
- Prytula, M., 2024. Fine-tuning of BERT, DistilBERT, XLM-RoBERTa, and Ukr-RoBERTa models for sentiment analysis of reviews in the Ukrainian language. Machine Learning, 3, 4.
- Ramos, L., Chang, O., 2023. Sentiment analysis of Russia-Ukraine conflict tweets using RoBERTa. Uniciencia, 37(1), 421–431, available at: http://dx.doi.org/10.15359/r.37-1.23.
- Rao, G., Huang, W., Feng, Z., Cong, Q., 2018. LSTM with sentence representations for document-level sentiment classification. Neurocomputing, 308, 49–57, available at: https://doi.org/10.1016/j.neucom.2018.04.045.
- Robertson, C. E., Pröllochs, N., Schwarzenegger, K. et al., 2023. Negativity drives online news consumption. Nature Human Behaviour, 7(5), 812–822, available at: https://doi.org/10.1038/s41562-023-01538-4.
- Rosenthal, S., Nakov, P., Kiritchenko, S. et al., 2015. SemEval-2015 Task 10: Sentiment analysis in Twitter. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), pp. 451–463.
- Sánchez-Rada, J. F., Iglesias, C. A., 2019. Social context in sentiment analysis: Formal definition, overview of current trends and framework for comparison. Information Fusion, 52, 344–356, available at: https://doi.org/10.1016/j.inffus.2019.05.003.
- Schouten, K., Frasincar, F., 2015. The benefit of concept-based features for sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (Eds.), Semantic Web Evaluation Challenges: SemWebEval 2015. Springer, vol. 548, pp. 273–287, available at: https://doi.org/10.1007/978-3-319-25518-7_19.
- Shaik, Z. H., Prasanna, D., Jahnavi, E. et al., 2024, June. FeedForward at SemEval-2024 Task 10: Trigger and sentext-height enriched emotion analysis in multi-party conversations. In: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pp. 745–756.
- Sharma, P., Mishra, N., 2016. Feature level sentiment analysis on movie reviews. In: Proceedings of the 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 306–311. IEEE.
- Shelke, N., Deshpande, S., Thakare, V., 2017. Domain independent approach for aspect-oriented sentiment analysis for product reviews. In: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications: FICTA 2016, vol. 2, Springer Singapore, pp. 651–659.
- Taboada, M., 2016. Sentiment analysis: An overview from linguistics. Annual Review of Linguistics, 2(1), 325–347, available at: https://doi.org/10.1146/annurev-linguistics-011415-040518.
- Tan, K. L., Lee, C. P., Lim, K. M., 2023. RoBERTa-GRU: A Hybrid Deep Learning Model for Enhanced Sentiment Analysis. Applied Sciences, 13(6), 3915, available at: https://doi.org/10.3390/app13063915.
- Tao, Y., Viberg, O., Baker, R. S., Kizilcec, R. F., 2024. Cultural bias and cultural alignment of large language models. PNAS Nexus, 3(9), 346, available at: https://doi.org/10.1093/pnasnexus/pgae346.
- Thakkar, G., Preradović, N. M., Tadić, M., 2024. Examining sentiment analysis for low-resource languages with data augmentation techniques. Eng, 5(4), 2920–2942.
- Tunstall, L., Beeching, E., Lambert, N. et al., 2023. Zephyr: Direct distillation of LM alignment. arXiv preprint, arXiv:2310.16944.
- Vergho, T., Godbout, J. F., Rabbany, R., Pelrine, K., 2024. Comparing GPT-4 and Open-Source Language Models in Misinformation Mitigation. arXiv preprint, arXiv:2401.06920, available at: https://doi.org/10.48550/arXiv.2401.06920.
- Veselovská, K., 2017. Sentiment analysis in Czech. Ústav formální a aplikované lingvistiky.
- Vidhya, R., Gopalakrishnan, P., Vallamkondu, N. K., 2021. Sentiment analysis using machine learning classifiers: Evaluation of performance. In: Proceedings of the First International Conference on Computing, Communication and Control System (I3CAC 2021), June 07–08. Chennai, India: Bharath University, available at: https://doi.org/10.4108/eai.7-6-2021.2308565.
- Wankhade, M., Rao, A. C., Kulkarni, C., 2022. A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55, 5731–5780, available at: https://doi.org/10.1007/s10462-022-10144-1.
- Xu, G., Meng, Y., Qiu, X. et al., 2019. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 7, 51522–51532, available at: https://doi.org/10.1109/ACCESS.2019.2909919.
- Yang, T., Majó-Vázquez, S., Nielsen, R. K., González-Bailón, S., 2020. Exposure to news grows less fragmented with an increase in mobile access. Proceedings of the National Academy of Sciences of the United States of America, 117(46), 28678–28683, available at: https://doi.org/10.1073/pnas.2006089117.
- Ye, J., Chen, X., Xu, N. et al., 2023. A comprehensive capability analysis of GPT-3 and GPT-3.5 series models. arXiv preprint, arXiv:2303.10420, available at: https://doi.org/10.48550/arXiv.2303.10420.
- Yuna, D., Xiaokun, L., Jianing, L., Lu, H., 2022. Cross-cultural communication on social media: Review from the perspective of cultural psychology and neuroscience. Frontiers in Psychology, 13, 858900, available at: https://doi.org/10.3389/fpsyg.2022.858900.