Have a personal or library account? Click to login
Sentiment analysis of cultural differences in online comments on popular news Cover

Sentiment analysis of cultural differences in online comments on popular news

Open Access
|Dec 2025

References

  1. Amirizaniani, M., Martin, E., Sivachenko, M. et al., 2024, October. Can LLMs reason like humans? Assessing theory of mind reasoning in LLMs for open-ended questions. In: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, pp. 34–44.
  2. Anderwald, L., 2018. Language change and cultural change: The grammaticalization of the GET-passive in context. Language & Communication, 62, 1–14. Aslan, S., 2023. A deep learning-based sentiment analysis approach (MF-CNN-BILSTM) and topic modeling of tweets related to the Ukraine–Russia conflict. Applied Soft Computing, 143, 110404, available at: https://doi.org/10.1016/j.asoc.2023.110404.
  3. Barbieri, F., Espinosa Anke, L., Camacho-Collados, J., 2022. XLM-T: Multilingual language models in Twitter for sentiment analysis and beyond. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, European Language Resources Association, pp. 258–266, available at: https://aclanthology.org/2022.lrec-1.27.
  4. Boroditsky, L., 2011. How language shapes thought. Scientific American, 304(2), 62–65.
  5. Boyd, D. M., Ellison, N. B., 2007. Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210–230, available at: https://doi.org/10.1111/j.1083-6101.2007.00393.x.
  6. Bose, R., Dey, R. K., Roy, S., Sarddar, D., 2020. Sentiment analysis on online product reviews. In: Tuba, M., Akashe, S., Joshi, A. (Eds.), Information and Communication Technology for Sustainable Development (Advances in Intelligent Systems and Computing, Vol. 933). Singapore: Springer, pp. 559–569, available at: https://doi.org/10.1007/978-981-13-7166-0_56.
  7. Dahlberg, G. M., Bagga-Gupta, S., 2014. Understanding global learning spaces: An empirical study of languaging and transmigrant positions in the virtual classroom. Learning, Media and Technology, 39(4), 468–487, available at: https://doi.org/10.1080/17439884.2014.931868.
  8. Ellison, N., Steinfield, C., Lampe, C., 2007. The benefits of Facebook “friends”: Exploring the relationship between college students’ use of online social networks and social capital. Journal of Computer-Mediated Communication, 12(3), article 1, available at: http://jcmc.indiana.edu/vol12/issue4/ellison.html.
  9. Field, J., 2004. Psycholinguistics: The key concepts. Routledge.
  10. Flek, L., 2020. Returning the N to NLP: Towards contextually personalized classification models. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7828– 7838, available at: https://doi.org/10.18653/v1/2020.acl-main.700.
  11. Havaldar, S., Singhal, B., Rai, S. et al., 2023, July. Multilingual language models are not multicultural: A case study in emotion. In: Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Association for Computational Linguistics, pp. 202–214, available at: https://doi.org/10.18653/v1/2023.wassa-1.19.
  12. Hassonah, M. A., Al-Sayyed, R., Rodan, A. et al., 2020. An efficient hybrid filter and evolutionary wrapper approach for sentiment analysis of various topics on Twitter. Knowledge-Based Systems, 192, 105353, available at: https://doi.org/10.1016/j.knosys.2019.105353.
  13. Hordiienko, K., 2024. AI and human sentiment analysis with cultural aspect. Poster presented at the 21st International Congress of Linguists, Poznań, Poland. Hordiienko, K., 2021. Moral disengagement as a factor of cyberbullying among students. Habitus, (29), 147–151, retrieved from: http://nbuv.gov.ua/UJRN/habit_2021_29_27.
  14. Hordiienko, K., Joukl, Z., 2023, August 11–20. Sentiment analysis of different nationalities’ internet comments on extraordinary news: cultural aspect. České Budějovice, Czech Republic: Summer School of Linguistics, retrieved from: https://ssol.ff.cuni.cz/summer-school-of-linguistics/ssol-2023/.
  15. Hordiienko, K., Joukl, Z., 2024. Sentimental reflection of global crises: Czech and Ukrainian views on popular events through the prism of internet commentary. Jazykovedný Časopis, 75(1), 43–61, available at: https://doi.org/10.2478/jazcas-2024-0027.
  16. Hung, L. P., Alias, S., 2023. Beyond sentiment analysis: A review of recent trends in text-based sentiment analysis and emotion detection. Journal of Advanced Computational Intelligence and Intelligent Informatics, 27(1), 84–95, available at: https://doi.org/10.20965/jaciii.2023.p0084.
  17. Hunston, S., 2010. Corpus approaches to evaluation: Phraseology and evaluative language. Routledge.
  18. Karakikes, A., Alexiadis, P., Kotis, K., 2024. Bias in X (Twitter) and Telegram-Based Intelligence Analysis: Exploring Challenges and Potential Mitigating Roles of AI. SN Computer Science, 5(5), 574, available at: https://doi.org/10.1007/s42979-024-02935-w.
  19. Kheiri, K., Karimi, H., 2023. SentimentGPT: Exploiting GPT for advanced sentiment analysis and its departure from current machine learning. arXiv preprint, arXiv:2307.10234.
  20. Krippendorf, K., 2004. Content analysis: An introduction to its methodology. Sage Publications. Krishnamoorthy, S., 2018. Sentiment analysis of financial news articles using performance indicators. Knowledge and Information Systems, 56(2), 373–394, available at: https://doi.org/10.48550/arXiv.1811.11008.
  21. Krugmann, J. O., Hartmann, J., 2024. Sentiment analysis in the age of generative AI. Customer Needs and Solutions, 11(3), available at: https://doi.org/10.1007/s40547-024-00143-4.
  22. Liu, B., 2012. Sentiment analysis and opinion mining. Morgan & Claypool Publishers, available at: https://doi.org/10.2200/S00416ED1V01Y201204HLT016.
  23. Liu, B., Zhang, L., 2012. A survey of opinion mining and sentiment analysis. In: Aggarwal, C. C., Zhai, C. (Eds.), Mining text data. Springer, pp. 415–463, available at: https://doi.org/10.1007/978-1-4614-3223-4_13.
  24. Mao, Y., Liu, Q., Zhang, Y., 2024. Sentiment analysis methods, applications, and challenges: A systematic literature review. Journal of King Saud University – Computer and Information Sciences, 36(4), Article 102048, available at: https://doi.org/10.1016/j.jksuci.2024.102048.
  25. Martin, J. R., White, P. R., 2005. The language of evaluation, vol. 2. Basingstoke: Palgrave Macmillan.
  26. Matlach, V., 2023. Úvod do zpracování dat 1 [Introduction to data processing 1]. Olomouc: Univerzita Palackého v Olomouci, VUP.
  27. Medhat, W., Hassan, A., Korashy, H., 2014. Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113, available at: https://doi.org/10.1016/j.asej.2014.04.011.
  28. Müngen, A. A., Aygün, İ., Kaya, M., 2020. Finding the relationship between news and social media users’ emotions in the COVID-19 process. Sakarya University Journal of Computer and Information Sciences, 3(3), 250–263, available at: https://doi.org/10.35377/saucis.03.03.830867.
  29. Nemesh, O. M., 2017. Virtual activity of personality: Structure and dynamics of psychological content. Slovo.
  30. Pang, B., Lee, L., 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.
  31. Pavitha, N., Pungliya, V., Raut, A. et al., 2022. Movie recommendation and sentiment analysis using machine learning. Global Transitions Proceedings, 3(1), 279–284, available at: https://doi.org/10.1016/j.gltp.2022.03.012.
  32. Pomytkina, L., Podkopaieva, Y., Hordiienko, K., 2021. Peculiarities of manifestation of student youth’ roles and positions in the cyberbullying process. International Journal of Modern Education and Computer Science, 13(6), 1–10, available at: https://doi.org/10.5815/ijmecs.2021.06.01.
  33. Prytula, M., 2024. Fine-tuning of BERT, DistilBERT, XLM-RoBERTa, and Ukr-RoBERTa models for sentiment analysis of reviews in the Ukrainian language. Machine Learning, 3, 4.
  34. Ramos, L., Chang, O., 2023. Sentiment analysis of Russia-Ukraine conflict tweets using RoBERTa. Uniciencia, 37(1), 421–431, available at: http://dx.doi.org/10.15359/r.37-1.23.
  35. Rao, G., Huang, W., Feng, Z., Cong, Q., 2018. LSTM with sentence representations for document-level sentiment classification. Neurocomputing, 308, 49–57, available at: https://doi.org/10.1016/j.neucom.2018.04.045.
  36. Robertson, C. E., Pröllochs, N., Schwarzenegger, K. et al., 2023. Negativity drives online news consumption. Nature Human Behaviour, 7(5), 812–822, available at: https://doi.org/10.1038/s41562-023-01538-4.
  37. Rosenthal, S., Nakov, P., Kiritchenko, S. et al., 2015. SemEval-2015 Task 10: Sentiment analysis in Twitter. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), pp. 451–463.
  38. Sánchez-Rada, J. F., Iglesias, C. A., 2019. Social context in sentiment analysis: Formal definition, overview of current trends and framework for comparison. Information Fusion, 52, 344–356, available at: https://doi.org/10.1016/j.inffus.2019.05.003.
  39. Schouten, K., Frasincar, F., 2015. The benefit of concept-based features for sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (Eds.), Semantic Web Evaluation Challenges: SemWebEval 2015. Springer, vol. 548, pp. 273–287, available at: https://doi.org/10.1007/978-3-319-25518-7_19.
  40. Shaik, Z. H., Prasanna, D., Jahnavi, E. et al., 2024, June. FeedForward at SemEval-2024 Task 10: Trigger and sentext-height enriched emotion analysis in multi-party conversations. In: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pp. 745–756.
  41. Sharma, P., Mishra, N., 2016. Feature level sentiment analysis on movie reviews. In: Proceedings of the 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 306–311. IEEE.
  42. Shelke, N., Deshpande, S., Thakare, V., 2017. Domain independent approach for aspect-oriented sentiment analysis for product reviews. In: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications: FICTA 2016, vol. 2, Springer Singapore, pp. 651–659.
  43. Taboada, M., 2016. Sentiment analysis: An overview from linguistics. Annual Review of Linguistics, 2(1), 325–347, available at: https://doi.org/10.1146/annurev-linguistics-011415-040518.
  44. Tan, K. L., Lee, C. P., Lim, K. M., 2023. RoBERTa-GRU: A Hybrid Deep Learning Model for Enhanced Sentiment Analysis. Applied Sciences, 13(6), 3915, available at: https://doi.org/10.3390/app13063915.
  45. Tao, Y., Viberg, O., Baker, R. S., Kizilcec, R. F., 2024. Cultural bias and cultural alignment of large language models. PNAS Nexus, 3(9), 346, available at: https://doi.org/10.1093/pnasnexus/pgae346.
  46. Thakkar, G., Preradović, N. M., Tadić, M., 2024. Examining sentiment analysis for low-resource languages with data augmentation techniques. Eng, 5(4), 2920–2942.
  47. Tunstall, L., Beeching, E., Lambert, N. et al., 2023. Zephyr: Direct distillation of LM alignment. arXiv preprint, arXiv:2310.16944.
  48. Vergho, T., Godbout, J. F., Rabbany, R., Pelrine, K., 2024. Comparing GPT-4 and Open-Source Language Models in Misinformation Mitigation. arXiv preprint, arXiv:2401.06920, available at: https://doi.org/10.48550/arXiv.2401.06920.
  49. Veselovská, K., 2017. Sentiment analysis in Czech. Ústav formální a aplikované lingvistiky.
  50. Vidhya, R., Gopalakrishnan, P., Vallamkondu, N. K., 2021. Sentiment analysis using machine learning classifiers: Evaluation of performance. In: Proceedings of the First International Conference on Computing, Communication and Control System (I3CAC 2021), June 07–08. Chennai, India: Bharath University, available at: https://doi.org/10.4108/eai.7-6-2021.2308565.
  51. Wankhade, M., Rao, A. C., Kulkarni, C., 2022. A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55, 5731–5780, available at: https://doi.org/10.1007/s10462-022-10144-1.
  52. Xu, G., Meng, Y., Qiu, X. et al., 2019. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 7, 51522–51532, available at: https://doi.org/10.1109/ACCESS.2019.2909919.
  53. Yang, T., Majó-Vázquez, S., Nielsen, R. K., González-Bailón, S., 2020. Exposure to news grows less fragmented with an increase in mobile access. Proceedings of the National Academy of Sciences of the United States of America, 117(46), 28678–28683, available at: https://doi.org/10.1073/pnas.2006089117.
  54. Ye, J., Chen, X., Xu, N. et al., 2023. A comprehensive capability analysis of GPT-3 and GPT-3.5 series models. arXiv preprint, arXiv:2303.10420, available at: https://doi.org/10.48550/arXiv.2303.10420.
  55. Yuna, D., Xiaokun, L., Jianing, L., Lu, H., 2022. Cross-cultural communication on social media: Review from the perspective of cultural psychology and neuroscience. Frontiers in Psychology, 13, 858900, available at: https://doi.org/10.3389/fpsyg.2022.858900.
Language: English
Page range: 1 - 13
Submitted on: Feb 6, 2025
|
Accepted on: Nov 26, 2025
|
Published on: Dec 29, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Kateryna Hordiienko, Libuše Kormaníková, published by Palacký University Olomouc
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.