Have a personal or library account? Click to login
Recent advances in the use of metal oxides as corrosion inhibitors: a review Cover

References

  1. R. O. Medupin, K. Ukoba, K. O. Yoro, and T.-C. Jen, “Sustainable approach for corrosion control in mild steel using plant-based inhibitors: A review,” Mater. Today Sustain., 2023, 22, 100373, doi: 10.1016/j.mtsust.2023.100373
  2. S. I. Ezugha and C. C. Aralu, “Evaluation of adsorption and corrosion inhibition properties of Solanum Macrocarpon leaves extract on mild steel in sulphuric acid solutions,” SN Appl. Sci., 2023, 5, 381, pp. 1–12, doi: 10.1007/s42452-023-05594-3
  3. U.S. Nwigwe, C.I. Nwoye, S.A. Ajah, G. Kalu-Uka, M. Yibowei, “Corrosion properties of tempered medium carbon steel in 1.0M HCl and homemade vinegar,” Bull. Chem. Soc. Ethiop., 2022, 36, 4, 893–901, doi: 10.4314/bcse. v36i4.14
  4. E. C. Benedict, T. O. Chime, and E. Osoka, “Optimization and effect of leaves extracts on corrosion of mild steel in acidic medium,” Int. J. Biosci. Biochem. Bioinforma., 2020, 10, 117–126, doi: 10.17706/ijbbb.2020.10.2.117-126
  5. A. A. Ayodeji, F. O. Sunday, A. I. Godwin, and M. F. Chinemerem, “Evaluation of the corrosion inhibitive behaviour of pawpaw fluid on A315 mild steel and A304 stainless steel in H2SO4 medium,” Rasayan J. Chem., 2021, 4, 2506–2515, doi: 10.31788/RJC.2021.1446352
  6. S. Bashir, H. Lgaz, I. M. Chung, and A. Kumar, “Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study,” Chem. Eng. Commun., 2021, 208, 8, 1121–1130, 2021, doi: 10.1080/00986445.2020.1752680
  7. R. S. Nathiya, S. Perumal, V. Murugesan, and V. Raj, “Evaluation of extracts of Borassus flabellifer dust as green inhibitors for aluminium corrosion in acidic media,” Mater. Sci. Semicond. Process., 2019, 104, 104674, doi: 10.1016/j.mssp.2019.104674
  8. Y. Xu and R. Jin, “Measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network,” Constr. Build. Mater., 2018, 177, 125–133, doi: 10.1016/j.conbuildmat.2018.05.124
  9. X. Zhang, W. Li, X. Zuo, B. Tan, C. Xu, and S. Zhang, “Investigating the inhibitive effect of Davidia involucrata leaf extract as a biological eco-friendly inhibitor for copper in acidic medium,” J. Mol. Liq., 2021, 325, 115214, doi: 10.1016/j.molliq.2020.115214
  10. E. E. Ikechukwu and E. O. Pauline, “Environmental impacts of corrosion on the physical properties of copper and aluminium: a case study of the surrounding water bodies in Port Harcourt,” Open J. Soc. Sci., 2015, 3, 143–150, doi: 10.4236/jss.2015.32019
  11. A. I. Ndukwe, M. B. Deekae, K. Okon, C. C. Ozoh, and U. S. Ikele, “Metal corrosion in high temperature conditions: A review,” Zast. Mater., 2025, 65, 1–25, doi: Revihttps://doi.org/10.62638/ZasMat1203
  12. G. Z. Moldabayeva, А. L. Kozlovskiy, E. I. Kuldeyev, А. K. Syzdykov, and N. S. Buktukov, “Efficiency of using nitride and oxy-nitride coatings for protection against high-temperature oxidation and embrittlement of the surface layer of steel structures,” ES Mater. Manuf., 2024, 1–10, doi: 10.30919/esmm1129
  13. N. E. Dan, P.B. Hussain, N.B. Shaik, “Improved surface morphology and corrosion resistance performance of 2205 duplex stainless steel by low temperature gas nitriding,” J. Bio- Tribo-Corrosion, 2022, 8, 100, 1–11, doi: 10.1007/s40735-022-00698-6
  14. E. Ituen, E. Ekemini, L. Yuanhua, R. Li, and A. Singh, “Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite,” Int. Biodeterior. Biodegrad., 2020, 149, 104935, doi: 10.1016/j.ibiod.2020.104935
  15. K. Okon, I. C. Ekeke, C. A. Maduabuchi, I. I. Ayogu, and C. O. Akalezi, “Corrosion inhibition of mild steel and aluminium using extracts of vernonia amygdalina: a review,” Nexus Futur. Mater., 2025, 2, 1, 154–166, doi: https://doi.org/10.70128/590516
  16. M. Iannuzzi and G. S. Frankel, “The carbon footprint of steel corrosion,” npj Mater. Degrad., 2022, 6, 1, 1–4, doi: 10.1038/s41529-022-00318-1
  17. B. El Ibrahimi, J. V. Nardeli, and L. Guo, “An overview of corrosion,” ACS Symp. Ser., 2021, 1403, 1–19, doi: 10.1021/bk-2021-1403.ch001
  18. A. Kadhim et al., “A mini review on corrosion, inhibitors and mechanism types of mild steel inhibition in an acidic environment,” Int. J. Corros. Scale Inhib., 2021, 10, 3, 861–884, doi: 10.17675/2305-6894-2021-10-3-2
  19. A. Thakur, S. Sharma, R. Ganjoo, H. Assad, and A. Kumar, “Anti-corrosive potential of the sustainable corrosion inhibitors based on biomass waste: a review on preceding and perspective research,” J. Phys. Conf. Ser., 2022, 2267, 1, doi: 10.1088/1742-6596/2267/1/012079
  20. B. R. Fazal, T. Becker, B. Kinsella, and K. Lepkova, “A review of plant extracts as green corrosion inhibitors for CO2 corrosion of carbon steel,” npj Mater. Degrad., 2022, 6, 1, doi: 10.1038/s41529-021-00201-5
  21. S. U. Nwigwe, R. Umunakwe, S. O. Mbam, M. Yibowei, K. Okon, and G. Kalu-Uka, “The inhibition of Carica papaya leaves extract on the corrosion of cold worked and annealed mild steel in HCl and NaOH solutions using a weight loss technique,” Eng. Appl. Sci. Res., 2019, 46, 2, 114–119, doi: 10.14456/easr.2019.14
  22. A. I. Ndukwe, N. E. Dan, J. U. Anaele, C. C. Ozoh, K. Okon, and P. C. Agu, “The inhibition of mild steel corrosion by papaya and neem extracts,” Mater. Prot., 2023, 64, 3, 274–282, doi: 10.5937/zasmat2303274N
  23. M. Hammi, Y. Ziat, Z. Zarhri, C. Laghlimi, and A. Moutcine, “Epoxy / alumina composite coating on welded steel 316L with excellent wear and anticorrosion properties,” Sci. Rep., 2021, 1–14, doi: 10.1038/s41598-021-91741-y
  24. I. Aliyu, S. Lasisi, S. J. Olagunju, A. Guruza, H. M. Sani, and I. Y. Suleiman, “Characterization of Euphorbia hirta Leaf as eco-friendly inhibitor for protection of mild steel in acidic environment,” J. Mater. Environ. Sci., 2022, 13, 2, 172–184
  25. M. D. R. S. Campos, C. Blawert, N. Scharnagl, M. Störmer, and M. L. Zheludkevich, “Cathodic protection of mild steel using aluminium-based alloys,” Materials (Basel)., 2022, 15, 4, 1–26, doi: 10.3390/ma15041301
  26. A. Mohamed and N. Martin, “Impressed Current Cathodic Protection and Environmental Impacts,” in International Conference on Industrial Engineering and Operations Management, Manila, Philippines, 2023, pp. 2493–2509. doi: 10.46254/an13.20230683
  27. I. Akhmedov and Z. Mirkhasilova, “Construction of vertical drainage wells using corrosion resistant materials,” E3S Web Conf., 2021, 264, 1–10, doi: 10.1051/e3sconf/202126404016
  28. J. Come, M. Jesus, T. Dominguez, R. Aguilar, J. Jesus, and T. Espinosa, “Characterization of pitting corrosion of stainless steel using artificial neural networks,” Mater. Corros., 2015, 66, 10, 1084–1091
  29. O. Odujobi, T. Y. Elete, F. E. Adikwu, and F. O. Onyekwe, “Advanced corrosion protection frameworks for offshore and onshore oil and gas infrastructure Advanced corrosion protection frameworks for offshore and onshore oil and gas infrastructure,” Int. J. Eng. Res. Updat., 2025, 7, 2, 56–67, doi: 10.53430/ijeru.2024.7.2.0049
  30. P. Pedeferri, General Principles of Corrosion, 2018, doi: 10.1007/978-3-319-97625-9_1
  31. A. I. Ndukwe and C. N. Anyakwo, “Predictive Corrosion-Inhibition Model for Mild Steel in Sulphuric Acid (H2SO4) by Leaf-Pastes of Sida Acuta Plant,” J. Civil, Constr. Environ. Eng., 2017, 2, 5, 123–133, doi: 10.11648/j. jccee.20170205.11
  32. A. I. Ndukwe, “Green inhibitors for corrosion of metals: a review,” Acad. J. Manuf. Eng., 2022, 20, 2, 36–50
  33. C. Zhenyu, Wang Dan, Xie Fei, Jiang Jintao, and Yang Haiyan, “Study of CO2 corrosion behavior under oil⁃water two⁃phase flow system,” J. Liaoning Petrochemical Univ., 2023, 42, 1, 42–46
  34. O. A. Omotosho and O. O. Ajayi, “Investigating the acid failure of aluminium alloy in 2 M Hydrochloric acid using Vernonia amygdalina,” ITB J. Eng. Sci., 2012, 44, 1, 77–92, doi: 10.5614/itbj.eng.sci.2012.44.1.6
  35. A. Kumar and J. Singh, “Overview on corrosion in automotive industry and thermal power plant,” Proc. Eng. Sci., 2022, 4, 1, 13–22, doi: 10.24874/PES04.01.003
  36. J. Dom, F. Garc, and A. Serrano, “Eco-Friendly sol-gel coatings with organic corrosion,” Gels, 2024, 10, 168, 1–15, doi: https://doi.org/10.3390/gels10030168
  37. A.R. Nayak, M. Dominic, “Corrosion of reinforced concrete: A Review,” Int. Res. J. Eng. Technol., 2021, 8, 6, 31–34
  38. K. Gharbi, S. Chouicha, and M. A. Kelland, “Field test investigation of the performance of corrosion inhibitors: a case study,” J. Pet. Explor. Prod. Technol., 2021, 11, 10, 3879–3888, doi: 10.1007/s13202-021-01287-y
  39. S. S. Koishybaevich et al., “Methods of corrosion protection of equipment and pipelines in the oil and gas industry,” Bulletin of the K. Zhubanov Aktobe Regional University, 2024, 2, 76, 35–42
  40. L. Chaohui, Y. Han, K. Jinlong, Z. Yongbin, and Z. Yongkang, “An research overview of corrosion and protection technologies for offshore platforms,” Eng. Solut. to Mech. Mar. Struct. Infrastructures, 2024, 1, 4, 1–24, doi: 10.58531/esmmsi/1/4/2
  41. A. Aikawa, A. Kioka, M. Nakagawa, and S. Anzai, “Nano-bubbles as corrosion inhibitor in acidic geothermal fluid,” Geothermics, 2021, 89, 101962, doi: 10.1016/j.geothermics.2020.101962
  42. E. Kálmán, I. Felhosi, F. H. Kármán, I. Lukovits, J. Telegdi, and G. Pálinkás, “Environmentally friendly corrosion inhibitors,” Mater. Sci. Technol. A Compr. Treat., 2014, 1–2, 471–537, doi: 10.1002/9783527619306.ch9
  43. B. Valdez, M. Schorr, N. Cheng, E. Beltran, and R. Salinas, “Technological applications of volatile corrosion inhibitors,” Corros. Rev., 2018, 36, 3, 227–238, doi: 10.1515/corrrev-2017-0102
  44. Z. Fallah et al., “Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anti-corrosion coatings,” Adv. Colloid Interface Sci., 2021, 294, 1–23, doi: 10.1016/j.cis.2021.102454
  45. M. L. Grilli, “Metal oxides,” Metals (Basel)., 2020, 10, 6, 1–3, doi: 10.3390/met10060820
  46. Editorial, “Metal oxides as photocatalysts,” J. Saudi Chem. Soc., 2015, 19, 462–464, doi: 10.1016/j.jscs.2015.04.003
  47. J. A. Selvi, M. Arthanareeswari, P. Kamaraj, T. P. Malini, and K. Thilakavathi, “Study of corrosion inhibition property of metal oxides for carbon steel in acidic medium by gravimetric analysis,” J. Indian Chem. Soc., 2019, 96, 23–24
  48. K. Okon, C. O. Akalezi, C. A. Maduabuchi, I. B. Onyeachu, and T. O. Azeez, “Recent progress in the application of nickel / nickel oxide nanoparticles / nanocomposites as corrosion inhibitors,” Port. Electrochim. Acta, 2026, 44, 4, 267–287, doi: https://doi.org/10.4152/pea.2026440402
  49. R. H. Al-Dahiri, A. M. Turkustani, and M. A. Salam, “The application of zinc oxide nanoparticles as an eco-friendly inhibitor for steel in acidic solution,” Int. J. Electrochem. Sci., 2020, 15, 1, 442–457,doi: 10.20964/2020.01.01
  50. P. Nithyadevi et al., “Inhibition of corrosion of mild steel in well water by TiO2 nanoparticles and an aqueous extract of May flower,” Nanosyst. Physics, Chem. Math., 2016,7, 4, 711–723, doi: 10.17586/2220-8054-2016-7-4-711-723
  51. S. Monikandon and N. Ravisankar, “Biogenic silver oxide nanoparticles for inhibition of tmt rod corrosion in marine environment,” J. Environ. Nanotechnol., 2024, 13, 2, 397–403, doi: 10.13074/jent.2024.06.241530
  52. M. Fedel, A. Ahniyaz, L. G. Ecco, and F. Deflorian, “Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel,” Electrochim. Acta, 2014, 131, 71–78, doi: 10.1016/j.electacta.2013.11.164
  53. Z. He, D. Cao, Y. Qiao, M. D. Hayat, H. Singh, and Y. Wang, “Cobalt–phosphorus–titanium oxide nanocomposite coatings: structures, properties, and corrosions studies,” J. Mater. Sci. Mater. Electron., 2019, 30, 22, 19940–19947, doi: 10.1007/s10854-019-02360-3
  54. D. M. Ibrahim, H. F. Emrayed, and A. A. Youssef, “Green and chemical synthesis of magnetite nanoparticles for corrosion inhibition applications,” Iraqi J. Appl. Phys., 2025, 21, 1, 156–160
  55. S. Sivalingam, M. Rajendran, J. Gayathri, S. Anu, and J. Kavirajwar, “A novel green synthesis of ZrO nanoparticles as a corrosion inhibitor on ASTM-415 carbon steel in 0.5 M H2SO4,” Results Chem., 2024, vol. 12, 1–8, doi: 10.1016/j.rechem.2024.101877
  56. A. Thakur, S. Kaya, and A. Kumar, “Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys,” Appl. Sci., 2023, 13, 2, doi: 10.3390/app13020730
  57. R. Aslam, M. Mobin, M. Shoeb, and J. Aslam, “Novel ZrO2 – glycine nanocomposite as eco-friendly high temperature corrosion inhibitor for mild steel in hydrochloric acid solution,” Sci. Rep., 2022, 12, 9274, 1–19, doi: 10.1038/s41598-022-13359-y
  58. S. E. H. Etaiw, G. S. Hassan, A. A. El-Hossiany, and A. S. Fouda, “Nano-metal–organic frameworks as corrosion inhibitors for strengthening anti-corrosion behavior of carbon steel in a sulfuric acid environment: from synthesis to applications,” RSC Adv., 2023, 13, 22, 15222–15235, doi: 10.1039/d3ra01644g
  59. H. A. El-Sabban and M. A. Deyab, “Novel highly efficient ternary ZnO wrapped PPy-NTs/g-C3N4 nanocomposite as an epoxy coating for corrosion protection,” Sci. Rep., 2023, 13, 1, 1–11, doi: 10.1038/s41598-023-48557-9
  60. H. A. Ezzat, M. A. Hegazy, N. A. Nada, O. Osman, and M. A. Ibrahim, “Application of Cs/ZnO/GO hybrid nano-composite for enhanced interbehavior of electronic properties and thermal stability as corrosion inhibitor,” Egypt. J. Chem., 2021, 64, 3, 1197–1205, doi: 10.21608/EJCHEM.2021.55872.3188
  61. B. T. S. Al-Mosawi, M. M. Sabri, and M. A. Ahmed, “Synergistic effect of ZnO nanoparticles with organic compound as corrosion inhibition,” Int. J. Low-Carbon Technol., 2021, 16, 2, 429–435, doi: 10.1093/ijlct/ctaa076
  62. S. Sanyal, T. Kim, M. Rabelo, D. P. Pham, and J. Yi, “Novel synthesis of a self-healing Ce based eco-friendly sealing coating to mitigate corrosion in insulators installed in industrial regions,” RSC Adv., 2022, 12, 5, 2612–2621, doi: 10.1039/d1ra08223j
  63. A. Kirdeikiene et al., “Self-healing properties of cerium-modified molybdate conversion coating on steel,” Coatings, 2021, 11, 2, 1–15, doi: 10.3390/coatings11020194
  64. B. Ezzeddin and M. T. A. Al-Khalidi, “An investigation into the effect of using different metal oxide nanoparticles on the anti-corrosion properties of coatings: a comparative study,” Moroccan J. Chem., 2024, 12, 2, 657–675, doi: 10.48317/IMIST.PRSM/morjchem-v12i2.43008
  65. P. K. Dikshit et al., “Green synthesis of metallic nanoparticles: applications and limitations,” Catalysts, 2021, 11, 902, 1–35, doi: 10.1016/B978-0-12-822401-4.00022-2
  66. A. L. Eugene, M. O. Ugwu, and S. B. Aronimo, “A review on synthetic methods of nanostructured materials, Chem. Res. J., 2017, 2, 5, 97–123
  67. N. D. Jaji, H. L. Lee, M. H. Hussin, and H. Akil, “Advanced nickel nanoparticles technology: From synthesis to applications,” Nanotechnol. Rev., 2020, 9, 1456–1480
  68. P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” J. Drug Deliv. Sci. Technol., 2019,101174, doi: 10.1016/j.jddst.2019.101174
  69. J. Wawrzyniak, J. Karczewski, J. Ryl, K. Grochowska, and K. Siuzdak, “Laser-assisted synthesis and oxygen generation of nickel nanoparticles,” Materials (Basel)., 2020, 13, 18, doi: 10.3390/ma13184068
  70. C. Shalichah and A. Khumaeni, “Synthesis of nickel nano-particles by pulse laser ablation method using Nd:YAG laser,” J. Phys. Conf. Ser., 2018, 1025, 1, doi: 10.1088/1742-6596/1025/1/012002
  71. A. Pandey and R. Manivannan, “A Study on Synthesis of Nickel Nanoparticles Using Chemical Reduction Technique,” Recent Patents Nanomed., 2015, 5, 1–5
  72. Z. G. Wu, M. Munoz, and O. Montero, “The synthesis of nickel nanoparticles by hydrazine reduction,” Adv. Powder Technol., 2010, 21, 2, 165–168, doi: 10.1016/j. apt.2009.10.012
  73. A. S. Danial, M. M. Saleh, S. A. Salih, and M. I. Awad, “On the synthesis of nickel oxide nanoparticles by sol-gel technique and its electrocatalytic oxidation of glucose,” J. Power Sources, 2018, 293, 101–108, doi: 10.1016/j.jpow-sour.2015.05.024
  74. S. Yousaf et al., “Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route,” Ceram. Int., 2020, 46, 3, 3750–3758, 2020, doi: 10.1016/j.ceramint.2019.10.097
  75. K. Hadi and T. M. Al-Saadi, “Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method,” Ibn AL-Haitham J. Pure Appl. Sci., 2022, 35, 4, 94–103, doi: 10.30526/35.4.2872
  76. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, E. P. Simonenko, and N. T. Kuznetsov, “Hydrothermal synthesis of a cellular NiO film on carbon paper as a promising way to obtain a hierarchically organized electrode for a flexible supercapacitor,” Materials (Basel)., 2023, 16, 15, doi: 10.3390/ma16155208
  77. X. Wan, M. Yuan, S. L. Tie, and S. Lan, “Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue,” Appl. Surf. Sci., 2013, 277, 3, 40–46, doi: 10.1016/j.apsusc.2013.03.126
  78. Z. Libor and Q. Zhang, “The synthesis of nickel nanoparticles with controlled morphology and SiO2 /Ni core-shell structures,” Mater. Chem. Phys., 2009, 114, 902–907
  79. M. I. Din, A. G. Nabi, A. Rani, A. Aihetasham, and M. Mukhtar, “Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials,” Environ. Nanotechnology, Monit. Manag., 2018, 9, 29–36, doi: 10.1016/j. enmm.2017.11.005
  80. J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar, and P. Kumar, “‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation,” J. Nanobiotechnology, 2018, 16, 1, 1–24, doi: 10.1186/s12951-018-0408-4
  81. A. A. Olajire and A. A. Mohammed, “Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films,” Adv. Powder Technol., 2020, 31, 1, 211–218, doi: 10.1016/j. apt.2019.10.012
  82. C. J. Pandian, R. Palanivel, and S. Dhananasekaran, “Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption,” Chinese J. Chem. Eng., 2015, 23, 8, 1307–1315, doi: 10.1016/j. cjche.2015.05.012
  83. S. S. Dhilip Kumar and H. Abrahamse, “Advancement of nanobiomaterials to deliver natural compounds for tissue engineering applications,” Int. J. Mol. Sci., 2020, 21, 18, 1–27, doi: 10.3390/ijms21186752
  84. A. Ali, Y. W. Chiang, and R. M. Santos, “X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals, applications, and research directions,” Minerals, 2022, 12, 2, doi: 10.3390/min12020205
  85. M. Mohammad, A. Irfan, and S. Mohd, “Investigation into the highly efficient Artemisia absinthium-silver nanoparticles composite as a novel environmentally benign corrosion inhibitor for mild steel in 1M HCl,” J. Adhes. Sci. Technol., 2022, 1–26, doi: 10.1080/01694243.2022.2075523
  86. A. Mohammed and A. Abdullah, “Scanning electron microscopy (sem): a review,” Proc. 2018 Int. Conf. Hydraul. Pneum. - HERVEX, 2018, 77–85
  87. H. A. Al-Turaif, “Surface morphology and chemistry of epoxy-based coatings after exposure to ultraviolet radiation,” Prog. Org. Coatings, 2013, 76, 4, 677–681, doi: 10.1016/j. porgcoat.2012.12.010
  88. M. Gouda, A. Aljaafari, Y. Al-Fayz, and W. E. Boraie, “Preparation and characterization of some nanometal oxides using microwave technique and their application to cotton fabrics,” J. Nanomater., 2015, doi: 10.1155/2015/586904
  89. S. Srihasam, K. Thyagarajan, M. Korivi, V. R. Lebaka, and S. P. R. Mallem, “Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties,” Biomolecules, 2020, 10, 1, doi: 10.3390/biom10010089
  90. I. M. Chung, R. Malathy, S. H. Kim, K. Kalaiselvi, M. Prabakaran, and M. Gopiraman, “Ecofriendly green inhibitor from Hemerocallis fulva against aluminum corrosion in sulphuric acid medium,” J. Adhes. Sci. Technol., 2020, 34, 14, 1483–1506, doi: 10.1080/01694243.2020.1712770
  91. K. E. Mostafa, “Anti-corrosion nickel / reduced graphene oxide-titanium dioxide coating for mild steel in organic acids,” J. Mater. Environ. Sci., 2020, 10, 2, 141–162
  92. B. Ren, Y. Wang, and J. Z. Ou, “Engineering two-dimensional metal oxides via surface functionalization for biological applications,” Mater. Chem. B, 2020, doi: 10.1039/C9TB02423A
  93. B. Polteau, F. Tessier, and L. Cario, “Synthesis of Ni-poor NiO nanoparticles for p-DSSC applications,” Solid State Sci., 2016, 54, 37–42
  94. M. P. Deshpande, K. N. Patel, V. P. Gujarati, K. Patel, and S. H. Chaki, “Structural, thermal and optical properties of nickel oxide (nio) nanoparticles synthesized by chemical precipitation method,” Adv. Mater. Res., 2016, 1141, 65–71, doi: 10.4028/www.scientific.net/amr.1141.65
  95. S. Haq et al., “Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. sativus) extract,” Mater. Res. Express, 2021, 8, 5, doi: 10.1088/2053-1591/abfc7c
  96. A. Singh et al., “Structurally and morphologically engineered single-pot biogenic synthesis of NiO nanoparticles with enhanced photocatalytic and antimicrobial activities,” J. Clean. Prod., 2022, 343, doi: 10.1016/j.jclepro.2022.131026
  97. A. A. Barzinjy, S. M. Hamad, S. Aydın, M. H. Ahmed, and F. H. S. Hussain, “Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation,” J. Mater. Sci. Mater. Electron., 2020, 31, 14, 11303–11316, doi: 10.1007/s10854-020-03679-y
  98. R. A. Raj, M. S. AlSalhi, and S. Devanesan, “Microwave-assisted synthesis of nickel oxide nanoparticles using Coriandrum sativum leaf extract and their structural-magnetic catalytic properties,” Materials (Basel)., 2017, 10, 5, doi: 10.3390/ma10050460
  99. M. Nawaz, R. A. Shakoor, R. Kahraman, and M. F. Montemor, “Cerium oxide loaded with Gum Arabic as environmentally friendly anti-corrosion additive for protection of coated steel,” Mater. Des., 2021, 198, 109361, doi: 10.1016/j.matdes.2020.109361
  100. S. Sudhasree, A. S. Banu, P. Brindha, and G. A. Kurian, “Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity,” Toxicol. Environ. Chem., 2014, 1–12, doi: 10.1080/02772248.2014.923148
  101. H. Seifi, T. Gholami, S. Seifi, S. Mehdi, M. Salavati-niasari, and A. Pyrolysis, “A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nano-materials,” J. Anal. Appl. Pyrolysis, 2020, doi: https://doi.org/10.1016/j.jaap.2020.104840
  102. A. Iqbal, A. U. Haq, G. A. Cerrón-Calle, S. A. R. Naqvi, P. Westerhoff, and S. Garcia-Segura, “Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides,” Catalysts, 2021, 11, 7, doi: 10.3390/catal11070806
  103. Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S. M. Hosseinpour-Mashkani, and F. Tavakoli, “Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor,” J. Clust. Sci., 2012, 23, 577–583, 2012, doi: 10.1007/s10876-012-0477-8
  104. T. A. Nguyen, H. Nguyen, T. V. Nguyen, H. Thai, and X. Shi, “Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings,” J. Nanosci. Nanotechnol., 2016, 16, 9, 9874–9881, doi: 10.1166/jnn.2016.12162
  105. B. Ramezanzadeh, M. M. Attar, and M. Farzam, “A study on the anticorrosion performance of the epoxy-polyamide nanocomposites containing ZnO nanoparticles,” Prog. Org. Coatings, 2011, 72, 3, 410–422, doi: 10.1016/j.porg-coat.2011.05.014
  106. O. Dagdag et al., “Epoxy resin and TiO2 composite as anticorrosive material for carbon steel in 3 % NaCl medium : Experimental and computational studies,” J. Mol. Liq., 2020, 317, 1–8, doi: 10.1016/j.molliq.2020.114249
  107. M. Behzadnasab, S. M. Mirabedini, and M. Esfandeh, “Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia,” Corros. Sci., 2013, 75, 134–141, doi: 10.1016/j.corsci.2013.05.024
  108. W. Yang et al., “Protection of mild steel with molecular engineered epoxy nanocomposite coatings containing corrosion inhibitor functionalized nanoparticles,” Surf. Coatings Technol., 2021, 406, doi: 10.1016/j.surfcoat.2020.126639
  109. A. El-Faham et al., “Silver-embedded epoxy nanocomposites as organic coatings for steel,” Prog. Org. Coatings, 2018, 123, 209–222, doi: 10.1016/j.porgcoat.2018.07.006
  110. B. Dojer and J. Kristl, “Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method,” Heliyon, 2017, 1–19, doi: 10.1016/j.heliyon.2017.e00273
  111. U. K. Panigrahi, V. Sathe, P. D. Babu, A. Mitra, and P. Mallick, “Effect of Mg doping on the improvement of photoluminescence and magnetic properties of NiO nanoparticles,” Nano Express, 2020, 1, 2, doi: 10.1088/2632-959X/aba285
  112. A. Kotta and H. K. Seo, “Facile synthesis of highly conductive vanadium-doped NiO film for transparent conductive oxide,” Appl. Sci., 2020, 10, 16, 1–11, doi: 10.3390/APP10165415
  113. T. Nathan, A. Aziz, A. F. Noor, and S. R. S. Prabaharan, “Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties,” J. Solid State Electrochem., 2008, 12, 7–8, 1003–1009, doi: 10.1007/s10008-007-0465-3
  114. P. Kakisan, K. Karbon, and M. Komposit, “Corrosion protection of carbon steel using polyaniline composite with inorganic pigments,” Sains Malaysiana, 2011, 40, 7, 757–763
  115. C. Ejileugha, K. M. Ezealisiji, A. N. Ezejiofor, and O. E. Orisakwe, “Microbiologically influenced corrosion: uncovering mechanisms and discovering inhibitor – metal and metal oxide nanoparticles as promising biocorrosion inhibitors,” J. Bio- Tribo-Corrosion, 2021, 7, 3, 1–21, doi: 10.1007/s40735-021-00545-0
  116. M. L. Zheludkevich, R. Serra, M. F. Montemor, and M. G. S. Ferreira, “Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors,” Electrochem. commun., 2005, 7, 8, 836–840, doi: 10.1016/j. elecom.2005.04.039
  117. R. F. Sadek, H. A. Farrag, S. M. Abdelsalam, Z. M. H. Keiralla, A. I. Raafat, and E. Araby, “A powerful nano-composite polymer prepared from metal oxide nanoparticles synthesized via brown algae as anti-corrosion and anti-biofilm,” Front. Mater., 2019, 6, 1–17, doi: 10.3389/fmats.2019.00140
  118. J. R. Xavier, “Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel,” Mater. Sci. Eng. B, 2020, 260, 114639, doi: 10.1016/j.mseb.2020.114639
  119. L. D. Trino et al., “Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants,” Ceram. Int. J., 2018, 44, 4000–4008, doi: 10. 1016/j.ceramint.2017.11.195
  120. A. S. Sowmyashree, A. Somya, C. B. P. Kumar, and S. Rao, “Novel nano corrosion inhibitor, integrated zinc titanate nano particles: Synthesis, characterization, thermodynamic and electrochemical studies,” Surfaces and Interfaces, 2021, 22, doi: 10.1016/j.surfin.2020.100812
  121. K. L. Palanisamy, V. Devabharathi, and N. Meenakshi Sundaram, “Corrosion inhibition studies of mild steel with carrier oil stabilized of iron oxide nanoparticles incorporated into a paint,” Int. J. ChemTech Res., 2015, 7, 4, 1661–1664
  122. A. U. Chaudhry, V. Mittal, and B. Mishra, “Evaluation of iron nickel oxide nanopowder as corrosion inhibitor: effect of metallic cations on carbon steel in aqueous NaCl,” Corros. Sci. Technol., 2016, 15, 1, 13–17, doi: http://dx.doi.org/10.14773/cst.2016.15.1.13
  123. I. N. Uzochukwu, I. O. Arukalam, and C. N. Njoku, “Anti- corrosion performance assessment of silane-modified chitosan/epoxy primer coatings on mild steel in saline environment using computational simulation techniques,” J. Mol. Model., 2023, 29, 4, 1–13, doi: 10.1007/s00894-023-05517-4
  124. B. Liao et al., “Functionalized nanocomposites as corrosion inhibitors,” Funct. Nanomater. Corros. Mitig. Synth. Charact. Appl. Part 10, 2022, doi: 10.1021/bk-2022-1418.ch010
  125. A. M. Atta, M. A. Ahmed, A. M. El-Saeed, O. M. Abo-Elenien, and M. A. El-Sockary, “Hybrid ZrO2/Cr2O3 epoxy nanocomposites as organic coatings for steel,” Coatings, 2020, 10, 10, 1–12, doi: 10.3390/coatings10100997
  126. M. D. Kiran, H. K. Govindaraju, and T. Jayaraju, “Evaluation of fracture toughness of epoxy-nickel coated carbon fiber composites with Al2O3 nano filler,” AIP Conf. Proc., 2019, 2057, doi: 10.1063/1.5085573
  127. H. Yang et al., “Study on high temperature properties of yttrium-modified aluminide coating on K444 alloy by chemical vapor deposition,” Coatings, 2024, 14, 6, 750, doi: 10. 3390/coatings14060750
  128. N. K. Ngo, S. Shao, H. Conrad, S. F. Sanders, F. D. Souza, and D. Golden, “Synthesis, characterization, and the effects of organo-grafted nanoparticles in nickel coatings for enhanced corrosion protection,” Mater. Today Commun., 2020, 25, 101628, doi: 10.1016/j.mtcomm.2020.101628
  129. V. P. M. Shajudheen, K. A. Rani, V. S. Kumar, A. U. Maheswari, M. Sivakumar, and S. S. Kumar, “Comparison of anticorrosion studies of titanium dioxide and nickel oxide thin films fabricated by spray coating technique,” Mater. Today Proc., 2018, 5, 2, 8889–8898, doi: 10.1016/j.matpr.2017.12.322
  130. K. Qaiss, Graphene and nanoparticles hybrid nanocomposites from preparation to applications. Composites Science and Technology, 2021. doi: 10.1007/978-981-33-4988-9
  131. M. Ibrahim, K. Kannan, H. Parangusan, S. Eldeib, and O. Shehata, “Enhanced corrosion protection of epoxy /ZnONiO nanocomposite coatings on steel,” Coatings, 2020, 10, 783, 1–14, doi:10.3390/coatings10080783
  132. C. A. Loto, O. O. Joseph, and R. T. Loto, “Inhibition effect of zinc oxide on the electrochemical corrosion of mild steel reinforced concrete in 0.2 M H2SO4,” J. Mater. Environ. Sci., 2016, 7, 3, 915–925
  133. J. N. Hasnidawani, H. N. Azlina, H. Norita, and N. Samat, “ZnO Nanoparticles for anti-corrosion nanocoating of carbon steel,” Mater. Sci. Forum, 2017, 894, 76–80, doi: 10. 4028/www.scientific.net/MSF.894.76
  134. R. H. Al-dahiri, A. M. Turkustani, and M. A. Salam, “The application of zinc oxide nanoparticles as an eco- friendly inhibitor for steel in acidic solution,” Int. J. Electrochem. Sci., 2020, 15, 442–457, doi: 10.20964/2020.01.01
  135. T. W. Quadri, L. O. Olasunkanmi, O. E. Fayemi, and M. M. Solomon, “Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution,” ACS Omega, 2017, doi: 10.1021/acsomega.7b01385
  136. M. Sudha, S. Surendhiran, V. Gowthambabu, A. Balamurugan, R. Anandarasu, and Y. A. Syed Khadar, “Enhancement of corrosive – resistant behavior of zn and mg metal plates using biosynthesized nickel oxide nanoparticles,” J. Bio-Tribo-Corrosion, 2021, doi: 10.1007/s40735-021-00492-w
  137. Y. A. S. Khadar et al., “Materials today: proceedings enhancement of corrosion inhibition of mild steel in acidic media by green-synthesized nano-manganese oxide,” Mater. Today Proc., 2021, doi: 10.1016/j.matpr.2021.04.335
  138. M. Gouda and H. M. Abd El-Lateef, “Novel cellulose derivatives containing metal (Cu, Fe, Ni) oxide nanoparticles as eco-friendly corrosion inhibitors for c-steel in acidic chloride solutions,” Molecules, 2021, 26, 22, doi: 10.3390/molecules26227006
  139. M. K. Madhup, N. K. Shah, and P. M. Wadhwani, “Investigation of surface morphology, anti-corrosive and abrasion resistance properties of nickel oxide epoxy nanocomposite (NiO-ENC) coating on mild steel substrate,” Prog. Org. Coatings, 2015, 80, 1–10, doi: 10.1016/j.porg-coat.2014.11.007
  140. H. M. K. Sheit, M. S. Mubarak, M. M. Varusai, and M. Jaaprasadh, “Enhanced anti-corrosion efficiency and anti- microbial properties of green synthesised nickel oxide (NiO) nanoparticles,” Res. Sq., 2023, 1–27
  141. P. M. Wadhwani, D. G. Ladha, V. K. Panchal, and N. K. Shah, “Enhanced corrosion inhibitive effect of p-methoxy- benzylidene-4,4-dimorpholine assembled on nickel oxide nanoparticles for mild steel in acid medium,” RSC Adv., 2014, 5, 7098–7111, doi: 10.1039/C4RA13390K
  142. V. M. Shajudheen, V. S. Kumar, A. U. Maheswari, M. Siva-kumar, S. S. Kumar, and K. A. Rani, “Characterization and anticorrosion studies of spray coated nickel oxide (NiO) thin films,” Mater. Today Proc., 2018, 5, 2, 8577–8586, doi: 10.1016/j.matpr.2017.11.555
  143. M. J. Anjum, H. Ali, W. Q. Khan, J. Zhao, and G. Yasin, Metal/metal oxide nanoparticles as corrosion inhibitors. Elsevier Inc., 2020. doi: 10.1016/B978-0-12-819359-4.00011-8
  144. T. Naseem and T. Durrani, “The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review,” Environ. Chem. Ecotoxicol., 2020, doi: 10.1016/j.enceco.2020.12.001
  145. G. Bystrzejewska-Piotrowska, J. Golimowski, and P. L. Urban, “Nanoparticles: their potential toxicity, waste and environmental management,” Waste Manag., 2009, 29, 9, 2587–2595, doi: 10.1016/j.wasman.2009.04.001
  146. A. M. Negrescu, M. S. Killian, S. N. V Raghu, P. Schmuki, A. Mazare, and A. Cimpean, “Metal oxide nanoparticles: review of synthesis, characterization and biological effects,” J. Funct. Biomater., 2022, 13, 274, 1–47, doi: https://doi.org/10.3390/jfb13040274
  147. R. C. Puerari et al., “Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri,” Ecotoxicol. Environ. Saf., 2016, 128, 36–43, doi: 10.1016/j.ecoenv.2016.02.011
  148. U. R. Sharma and N. Sharma, “Green synthesis, anti-cancer and corrosion inhibition activity of Cr2O3 nanoparticles,” Biointerface Res. Appl. Chem., 2021, 11, 1, 8402–8412, doi: 10.33263/BRIAC111.84028412
  149. Z. T. Khodair, A. A. Khadom, and H. A. Jasim, “Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views,” J. Mater. Res. Technol., 2018, 1–12, doi: 10.1016/j.jmrt.2018.03.003
  150. S. G. Firisa, G. G. Muleta, and A. A. Yimer, “Synthesis of nickel oxide nanoparticles and copper-doped nickel oxide nanocomposites using phytolacca dodecandra l ’ herit leaf extract and evaluation of its antioxidant and photocatalytic activities,” ACS Omega, 2022, 7, 44720–44732, doi: 10. 1021/acsomega.2c04042
  151. D. R. Askeland and W. J. Wright, The Science and Engineering of Materials, Seventh Ed. Boston, MA 02210 USA: Global Engineering: Timothy L. Anderson Development, 2014, www.cengage.com/highered
  152. O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, “Chromate replacement: what does the future hold?,” npj Mater. Degrad., 2018, 2, 1, 23–25, doi: 10.1038/s41529-018-0034-5
  153. I. Milošev, “Contemporary modes of corrosion protection and functionalization of materials,” Acta Chim. Slov, 2019, 66, 511–533, doi: 10.17344/acsi.2019.5162
  154. S. L. More, M. Kovochich, T. Lyons-Darden, M. Taylor, A. M. Schulte, and A. K. Madl, “Review and evaluation of the potential health effects of oxidic nickel nanoparticles,” Nanomaterials, 2021, 11, 3, 1–35, doi: 10.3390/nano 11030642
  155. A. Ghosal, S. Iqbal, and S. Ahmad, “NiO nano filler dispersed hybrid Soy epoxy anticorrosive coatings,” Prog. Org. Coatings, 2019, 133, 61–76, doi: 10.1016/j.porgcoat.2019.04.029
  156. S. Mallakpour and M. Madani, “A review of current coupling agents for modification of metal oxide nanoparticles,” Prog. Org. Coatings, 2015, 86, 194–207, doi: 10.1016/j. porgcoat.2015.05.023
  157. S. Rajendran, Nanoparticle-based corrosion inhibitors and self-assembled monolayers. Woodhead Publishing Limited, 2012, doi: 10.1533/9780857095800.2.283
  158. S. Simcha, A. Dotan, S. Kenig, and H. Dodiuk, “Characterization of hybrid epoxy nanocomposites,” Nanomaterials, 2012, 2, 4, 348–365, doi: 10.3390/nano2040348
  159. S. L. De Armentia, M. Pantoja, J. Abenojar, and M. A. Martinez, “Development of silane-based coatings with zirconia,” Coatings, 2018, doi: 10.3390/coatings8100368
  160. E. Grassini, M. Buzzi, B. Leporini, and A. Vozna, “A systematic review of chatbots in inclusive healthcare: insights from the last 5 years,” Univers. Access Inf. Soc., 2024, doi: 10.1007/s10209-024-01118-x
DOI: https://doi.org/10.2478/kom-2025-0003 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 14 - 33
Published on: Aug 12, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Kooffreh Okon, Ifeyinwa Calista Ekeke, Chidiebere Arinzechukwu Maduabuchi, Ikechukwu Ignatius Ayogu, Taofik Oladimeji Azeez, Christogonus Oudney Akalezi, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.