References
- R. O. Medupin, K. Ukoba, K. O. Yoro, and T.-C. Jen, “Sustainable approach for corrosion control in mild steel using plant-based inhibitors: A review,” Mater. Today Sustain., 2023, 22, 100373, doi: 10.1016/j.mtsust.2023.100373
- S. I. Ezugha and C. C. Aralu, “Evaluation of adsorption and corrosion inhibition properties of Solanum Macrocarpon leaves extract on mild steel in sulphuric acid solutions,” SN Appl. Sci., 2023, 5, 381, pp. 1–12, doi: 10.1007/s42452-023-05594-3
- U.S. Nwigwe, C.I. Nwoye, S.A. Ajah, G. Kalu-Uka, M. Yibowei, “Corrosion properties of tempered medium carbon steel in 1.0M HCl and homemade vinegar,” Bull. Chem. Soc. Ethiop., 2022, 36, 4, 893–901, doi: 10.4314/bcse. v36i4.14
- E. C. Benedict, T. O. Chime, and E. Osoka, “Optimization and effect of leaves extracts on corrosion of mild steel in acidic medium,” Int. J. Biosci. Biochem. Bioinforma., 2020, 10, 117–126, doi: 10.17706/ijbbb.2020.10.2.117-126
- A. A. Ayodeji, F. O. Sunday, A. I. Godwin, and M. F. Chinemerem, “Evaluation of the corrosion inhibitive behaviour of pawpaw fluid on A315 mild steel and A304 stainless steel in H2SO4 medium,” Rasayan J. Chem., 2021, 4, 2506–2515, doi: 10.31788/RJC.2021.1446352
- S. Bashir, H. Lgaz, I. M. Chung, and A. Kumar, “Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study,” Chem. Eng. Commun., 2021, 208, 8, 1121–1130, 2021, doi: 10.1080/00986445.2020.1752680
- R. S. Nathiya, S. Perumal, V. Murugesan, and V. Raj, “Evaluation of extracts of Borassus flabellifer dust as green inhibitors for aluminium corrosion in acidic media,” Mater. Sci. Semicond. Process., 2019, 104, 104674, doi: 10.1016/j.mssp.2019.104674
- Y. Xu and R. Jin, “Measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network,” Constr. Build. Mater., 2018, 177, 125–133, doi: 10.1016/j.conbuildmat.2018.05.124
- X. Zhang, W. Li, X. Zuo, B. Tan, C. Xu, and S. Zhang, “Investigating the inhibitive effect of Davidia involucrata leaf extract as a biological eco-friendly inhibitor for copper in acidic medium,” J. Mol. Liq., 2021, 325, 115214, doi: 10.1016/j.molliq.2020.115214
- E. E. Ikechukwu and E. O. Pauline, “Environmental impacts of corrosion on the physical properties of copper and aluminium: a case study of the surrounding water bodies in Port Harcourt,” Open J. Soc. Sci., 2015, 3, 143–150, doi: 10.4236/jss.2015.32019
- A. I. Ndukwe, M. B. Deekae, K. Okon, C. C. Ozoh, and U. S. Ikele, “Metal corrosion in high temperature conditions: A review,” Zast. Mater., 2025, 65, 1–25, doi: Revihttps://doi.org/10.62638/ZasMat1203
- G. Z. Moldabayeva, А. L. Kozlovskiy, E. I. Kuldeyev, А. K. Syzdykov, and N. S. Buktukov, “Efficiency of using nitride and oxy-nitride coatings for protection against high-temperature oxidation and embrittlement of the surface layer of steel structures,” ES Mater. Manuf., 2024, 1–10, doi: 10.30919/esmm1129
- N. E. Dan, P.B. Hussain, N.B. Shaik, “Improved surface morphology and corrosion resistance performance of 2205 duplex stainless steel by low temperature gas nitriding,” J. Bio- Tribo-Corrosion, 2022, 8, 100, 1–11, doi: 10.1007/s40735-022-00698-6
- E. Ituen, E. Ekemini, L. Yuanhua, R. Li, and A. Singh, “Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite,” Int. Biodeterior. Biodegrad., 2020, 149, 104935, doi: 10.1016/j.ibiod.2020.104935
- K. Okon, I. C. Ekeke, C. A. Maduabuchi, I. I. Ayogu, and C. O. Akalezi, “Corrosion inhibition of mild steel and aluminium using extracts of vernonia amygdalina: a review,” Nexus Futur. Mater., 2025, 2, 1, 154–166, doi: https://doi.org/10.70128/590516
- M. Iannuzzi and G. S. Frankel, “The carbon footprint of steel corrosion,” npj Mater. Degrad., 2022, 6, 1, 1–4, doi: 10.1038/s41529-022-00318-1
- B. El Ibrahimi, J. V. Nardeli, and L. Guo, “An overview of corrosion,” ACS Symp. Ser., 2021, 1403, 1–19, doi: 10.1021/bk-2021-1403.ch001
- A. Kadhim et al., “A mini review on corrosion, inhibitors and mechanism types of mild steel inhibition in an acidic environment,” Int. J. Corros. Scale Inhib., 2021, 10, 3, 861–884, doi: 10.17675/2305-6894-2021-10-3-2
- A. Thakur, S. Sharma, R. Ganjoo, H. Assad, and A. Kumar, “Anti-corrosive potential of the sustainable corrosion inhibitors based on biomass waste: a review on preceding and perspective research,” J. Phys. Conf. Ser., 2022, 2267, 1, doi: 10.1088/1742-6596/2267/1/012079
- B. R. Fazal, T. Becker, B. Kinsella, and K. Lepkova, “A review of plant extracts as green corrosion inhibitors for CO2 corrosion of carbon steel,” npj Mater. Degrad., 2022, 6, 1, doi: 10.1038/s41529-021-00201-5
- S. U. Nwigwe, R. Umunakwe, S. O. Mbam, M. Yibowei, K. Okon, and G. Kalu-Uka, “The inhibition of Carica papaya leaves extract on the corrosion of cold worked and annealed mild steel in HCl and NaOH solutions using a weight loss technique,” Eng. Appl. Sci. Res., 2019, 46, 2, 114–119, doi: 10.14456/easr.2019.14
- A. I. Ndukwe, N. E. Dan, J. U. Anaele, C. C. Ozoh, K. Okon, and P. C. Agu, “The inhibition of mild steel corrosion by papaya and neem extracts,” Mater. Prot., 2023, 64, 3, 274–282, doi: 10.5937/zasmat2303274N
- M. Hammi, Y. Ziat, Z. Zarhri, C. Laghlimi, and A. Moutcine, “Epoxy / alumina composite coating on welded steel 316L with excellent wear and anticorrosion properties,” Sci. Rep., 2021, 1–14, doi: 10.1038/s41598-021-91741-y
- I. Aliyu, S. Lasisi, S. J. Olagunju, A. Guruza, H. M. Sani, and I. Y. Suleiman, “Characterization of Euphorbia hirta Leaf as eco-friendly inhibitor for protection of mild steel in acidic environment,” J. Mater. Environ. Sci., 2022, 13, 2, 172–184
- M. D. R. S. Campos, C. Blawert, N. Scharnagl, M. Störmer, and M. L. Zheludkevich, “Cathodic protection of mild steel using aluminium-based alloys,” Materials (Basel)., 2022, 15, 4, 1–26, doi: 10.3390/ma15041301
- A. Mohamed and N. Martin, “Impressed Current Cathodic Protection and Environmental Impacts,” in International Conference on Industrial Engineering and Operations Management, Manila, Philippines, 2023, pp. 2493–2509. doi: 10.46254/an13.20230683
- I. Akhmedov and Z. Mirkhasilova, “Construction of vertical drainage wells using corrosion resistant materials,” E3S Web Conf., 2021, 264, 1–10, doi: 10.1051/e3sconf/202126404016
- J. Come, M. Jesus, T. Dominguez, R. Aguilar, J. Jesus, and T. Espinosa, “Characterization of pitting corrosion of stainless steel using artificial neural networks,” Mater. Corros., 2015, 66, 10, 1084–1091
- O. Odujobi, T. Y. Elete, F. E. Adikwu, and F. O. Onyekwe, “Advanced corrosion protection frameworks for offshore and onshore oil and gas infrastructure Advanced corrosion protection frameworks for offshore and onshore oil and gas infrastructure,” Int. J. Eng. Res. Updat., 2025, 7, 2, 56–67, doi: 10.53430/ijeru.2024.7.2.0049
- P. Pedeferri, General Principles of Corrosion, 2018, doi: 10.1007/978-3-319-97625-9_1
- A. I. Ndukwe and C. N. Anyakwo, “Predictive Corrosion-Inhibition Model for Mild Steel in Sulphuric Acid (H2SO4) by Leaf-Pastes of Sida Acuta Plant,” J. Civil, Constr. Environ. Eng., 2017, 2, 5, 123–133, doi: 10.11648/j. jccee.20170205.11
- A. I. Ndukwe, “Green inhibitors for corrosion of metals: a review,” Acad. J. Manuf. Eng., 2022, 20, 2, 36–50
- C. Zhenyu, Wang Dan, Xie Fei, Jiang Jintao, and Yang Haiyan, “Study of CO2 corrosion behavior under oil⁃water two⁃phase flow system,” J. Liaoning Petrochemical Univ., 2023, 42, 1, 42–46
- O. A. Omotosho and O. O. Ajayi, “Investigating the acid failure of aluminium alloy in 2 M Hydrochloric acid using Vernonia amygdalina,” ITB J. Eng. Sci., 2012, 44, 1, 77–92, doi: 10.5614/itbj.eng.sci.2012.44.1.6
- A. Kumar and J. Singh, “Overview on corrosion in automotive industry and thermal power plant,” Proc. Eng. Sci., 2022, 4, 1, 13–22, doi: 10.24874/PES04.01.003
- J. Dom, F. Garc, and A. Serrano, “Eco-Friendly sol-gel coatings with organic corrosion,” Gels, 2024, 10, 168, 1–15, doi: https://doi.org/10.3390/gels10030168
- A.R. Nayak, M. Dominic, “Corrosion of reinforced concrete: A Review,” Int. Res. J. Eng. Technol., 2021, 8, 6, 31–34
- K. Gharbi, S. Chouicha, and M. A. Kelland, “Field test investigation of the performance of corrosion inhibitors: a case study,” J. Pet. Explor. Prod. Technol., 2021, 11, 10, 3879–3888, doi: 10.1007/s13202-021-01287-y
- S. S. Koishybaevich et al., “Methods of corrosion protection of equipment and pipelines in the oil and gas industry,” Bulletin of the K. Zhubanov Aktobe Regional University, 2024, 2, 76, 35–42
- L. Chaohui, Y. Han, K. Jinlong, Z. Yongbin, and Z. Yongkang, “An research overview of corrosion and protection technologies for offshore platforms,” Eng. Solut. to Mech. Mar. Struct. Infrastructures, 2024, 1, 4, 1–24, doi: 10.58531/esmmsi/1/4/2
- A. Aikawa, A. Kioka, M. Nakagawa, and S. Anzai, “Nano-bubbles as corrosion inhibitor in acidic geothermal fluid,” Geothermics, 2021, 89, 101962, doi: 10.1016/j.geothermics.2020.101962
- E. Kálmán, I. Felhosi, F. H. Kármán, I. Lukovits, J. Telegdi, and G. Pálinkás, “Environmentally friendly corrosion inhibitors,” Mater. Sci. Technol. A Compr. Treat., 2014, 1–2, 471–537, doi: 10.1002/9783527619306.ch9
- B. Valdez, M. Schorr, N. Cheng, E. Beltran, and R. Salinas, “Technological applications of volatile corrosion inhibitors,” Corros. Rev., 2018, 36, 3, 227–238, doi: 10.1515/corrrev-2017-0102
- Z. Fallah et al., “Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anti-corrosion coatings,” Adv. Colloid Interface Sci., 2021, 294, 1–23, doi: 10.1016/j.cis.2021.102454
- M. L. Grilli, “Metal oxides,” Metals (Basel)., 2020, 10, 6, 1–3, doi: 10.3390/met10060820
- Editorial, “Metal oxides as photocatalysts,” J. Saudi Chem. Soc., 2015, 19, 462–464, doi: 10.1016/j.jscs.2015.04.003
- J. A. Selvi, M. Arthanareeswari, P. Kamaraj, T. P. Malini, and K. Thilakavathi, “Study of corrosion inhibition property of metal oxides for carbon steel in acidic medium by gravimetric analysis,” J. Indian Chem. Soc., 2019, 96, 23–24
- K. Okon, C. O. Akalezi, C. A. Maduabuchi, I. B. Onyeachu, and T. O. Azeez, “Recent progress in the application of nickel / nickel oxide nanoparticles / nanocomposites as corrosion inhibitors,” Port. Electrochim. Acta, 2026, 44, 4, 267–287, doi: https://doi.org/10.4152/pea.2026440402
- R. H. Al-Dahiri, A. M. Turkustani, and M. A. Salam, “The application of zinc oxide nanoparticles as an eco-friendly inhibitor for steel in acidic solution,” Int. J. Electrochem. Sci., 2020, 15, 1, 442–457,doi: 10.20964/2020.01.01
- P. Nithyadevi et al., “Inhibition of corrosion of mild steel in well water by TiO2 nanoparticles and an aqueous extract of May flower,” Nanosyst. Physics, Chem. Math., 2016,7, 4, 711–723, doi: 10.17586/2220-8054-2016-7-4-711-723
- S. Monikandon and N. Ravisankar, “Biogenic silver oxide nanoparticles for inhibition of tmt rod corrosion in marine environment,” J. Environ. Nanotechnol., 2024, 13, 2, 397–403, doi: 10.13074/jent.2024.06.241530
- M. Fedel, A. Ahniyaz, L. G. Ecco, and F. Deflorian, “Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel,” Electrochim. Acta, 2014, 131, 71–78, doi: 10.1016/j.electacta.2013.11.164
- Z. He, D. Cao, Y. Qiao, M. D. Hayat, H. Singh, and Y. Wang, “Cobalt–phosphorus–titanium oxide nanocomposite coatings: structures, properties, and corrosions studies,” J. Mater. Sci. Mater. Electron., 2019, 30, 22, 19940–19947, doi: 10.1007/s10854-019-02360-3
- D. M. Ibrahim, H. F. Emrayed, and A. A. Youssef, “Green and chemical synthesis of magnetite nanoparticles for corrosion inhibition applications,” Iraqi J. Appl. Phys., 2025, 21, 1, 156–160
- S. Sivalingam, M. Rajendran, J. Gayathri, S. Anu, and J. Kavirajwar, “A novel green synthesis of ZrO nanoparticles as a corrosion inhibitor on ASTM-415 carbon steel in 0.5 M H2SO4,” Results Chem., 2024, vol. 12, 1–8, doi: 10.1016/j.rechem.2024.101877
- A. Thakur, S. Kaya, and A. Kumar, “Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys,” Appl. Sci., 2023, 13, 2, doi: 10.3390/app13020730
- R. Aslam, M. Mobin, M. Shoeb, and J. Aslam, “Novel ZrO2 – glycine nanocomposite as eco-friendly high temperature corrosion inhibitor for mild steel in hydrochloric acid solution,” Sci. Rep., 2022, 12, 9274, 1–19, doi: 10.1038/s41598-022-13359-y
- S. E. H. Etaiw, G. S. Hassan, A. A. El-Hossiany, and A. S. Fouda, “Nano-metal–organic frameworks as corrosion inhibitors for strengthening anti-corrosion behavior of carbon steel in a sulfuric acid environment: from synthesis to applications,” RSC Adv., 2023, 13, 22, 15222–15235, doi: 10.1039/d3ra01644g
- H. A. El-Sabban and M. A. Deyab, “Novel highly efficient ternary ZnO wrapped PPy-NTs/g-C3N4 nanocomposite as an epoxy coating for corrosion protection,” Sci. Rep., 2023, 13, 1, 1–11, doi: 10.1038/s41598-023-48557-9
- H. A. Ezzat, M. A. Hegazy, N. A. Nada, O. Osman, and M. A. Ibrahim, “Application of Cs/ZnO/GO hybrid nano-composite for enhanced interbehavior of electronic properties and thermal stability as corrosion inhibitor,” Egypt. J. Chem., 2021, 64, 3, 1197–1205, doi: 10.21608/EJCHEM.2021.55872.3188
- B. T. S. Al-Mosawi, M. M. Sabri, and M. A. Ahmed, “Synergistic effect of ZnO nanoparticles with organic compound as corrosion inhibition,” Int. J. Low-Carbon Technol., 2021, 16, 2, 429–435, doi: 10.1093/ijlct/ctaa076
- S. Sanyal, T. Kim, M. Rabelo, D. P. Pham, and J. Yi, “Novel synthesis of a self-healing Ce based eco-friendly sealing coating to mitigate corrosion in insulators installed in industrial regions,” RSC Adv., 2022, 12, 5, 2612–2621, doi: 10.1039/d1ra08223j
- A. Kirdeikiene et al., “Self-healing properties of cerium-modified molybdate conversion coating on steel,” Coatings, 2021, 11, 2, 1–15, doi: 10.3390/coatings11020194
- B. Ezzeddin and M. T. A. Al-Khalidi, “An investigation into the effect of using different metal oxide nanoparticles on the anti-corrosion properties of coatings: a comparative study,” Moroccan J. Chem., 2024, 12, 2, 657–675, doi: 10.48317/IMIST.PRSM/morjchem-v12i2.43008
- P. K. Dikshit et al., “Green synthesis of metallic nanoparticles: applications and limitations,” Catalysts, 2021, 11, 902, 1–35, doi: 10.1016/B978-0-12-822401-4.00022-2
- A. L. Eugene, M. O. Ugwu, and S. B. Aronimo, “A review on synthetic methods of nanostructured materials, Chem. Res. J., 2017, 2, 5, 97–123
- N. D. Jaji, H. L. Lee, M. H. Hussin, and H. Akil, “Advanced nickel nanoparticles technology: From synthesis to applications,” Nanotechnol. Rev., 2020, 9, 1456–1480
- P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” J. Drug Deliv. Sci. Technol., 2019,101174, doi: 10.1016/j.jddst.2019.101174
- J. Wawrzyniak, J. Karczewski, J. Ryl, K. Grochowska, and K. Siuzdak, “Laser-assisted synthesis and oxygen generation of nickel nanoparticles,” Materials (Basel)., 2020, 13, 18, doi: 10.3390/ma13184068
- C. Shalichah and A. Khumaeni, “Synthesis of nickel nano-particles by pulse laser ablation method using Nd:YAG laser,” J. Phys. Conf. Ser., 2018, 1025, 1, doi: 10.1088/1742-6596/1025/1/012002
- A. Pandey and R. Manivannan, “A Study on Synthesis of Nickel Nanoparticles Using Chemical Reduction Technique,” Recent Patents Nanomed., 2015, 5, 1–5
- Z. G. Wu, M. Munoz, and O. Montero, “The synthesis of nickel nanoparticles by hydrazine reduction,” Adv. Powder Technol., 2010, 21, 2, 165–168, doi: 10.1016/j. apt.2009.10.012
- A. S. Danial, M. M. Saleh, S. A. Salih, and M. I. Awad, “On the synthesis of nickel oxide nanoparticles by sol-gel technique and its electrocatalytic oxidation of glucose,” J. Power Sources, 2018, 293, 101–108, doi: 10.1016/j.jpow-sour.2015.05.024
- S. Yousaf et al., “Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route,” Ceram. Int., 2020, 46, 3, 3750–3758, 2020, doi: 10.1016/j.ceramint.2019.10.097
- K. Hadi and T. M. Al-Saadi, “Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method,” Ibn AL-Haitham J. Pure Appl. Sci., 2022, 35, 4, 94–103, doi: 10.30526/35.4.2872
- T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, E. P. Simonenko, and N. T. Kuznetsov, “Hydrothermal synthesis of a cellular NiO film on carbon paper as a promising way to obtain a hierarchically organized electrode for a flexible supercapacitor,” Materials (Basel)., 2023, 16, 15, doi: 10.3390/ma16155208
- X. Wan, M. Yuan, S. L. Tie, and S. Lan, “Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue,” Appl. Surf. Sci., 2013, 277, 3, 40–46, doi: 10.1016/j.apsusc.2013.03.126
- Z. Libor and Q. Zhang, “The synthesis of nickel nanoparticles with controlled morphology and SiO2 /Ni core-shell structures,” Mater. Chem. Phys., 2009, 114, 902–907
- M. I. Din, A. G. Nabi, A. Rani, A. Aihetasham, and M. Mukhtar, “Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials,” Environ. Nanotechnology, Monit. Manag., 2018, 9, 29–36, doi: 10.1016/j. enmm.2017.11.005
- J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar, and P. Kumar, “‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation,” J. Nanobiotechnology, 2018, 16, 1, 1–24, doi: 10.1186/s12951-018-0408-4
- A. A. Olajire and A. A. Mohammed, “Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films,” Adv. Powder Technol., 2020, 31, 1, 211–218, doi: 10.1016/j. apt.2019.10.012
- C. J. Pandian, R. Palanivel, and S. Dhananasekaran, “Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption,” Chinese J. Chem. Eng., 2015, 23, 8, 1307–1315, doi: 10.1016/j. cjche.2015.05.012
- S. S. Dhilip Kumar and H. Abrahamse, “Advancement of nanobiomaterials to deliver natural compounds for tissue engineering applications,” Int. J. Mol. Sci., 2020, 21, 18, 1–27, doi: 10.3390/ijms21186752
- A. Ali, Y. W. Chiang, and R. M. Santos, “X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals, applications, and research directions,” Minerals, 2022, 12, 2, doi: 10.3390/min12020205
- M. Mohammad, A. Irfan, and S. Mohd, “Investigation into the highly efficient Artemisia absinthium-silver nanoparticles composite as a novel environmentally benign corrosion inhibitor for mild steel in 1M HCl,” J. Adhes. Sci. Technol., 2022, 1–26, doi: 10.1080/01694243.2022.2075523
- A. Mohammed and A. Abdullah, “Scanning electron microscopy (sem): a review,” Proc. 2018 Int. Conf. Hydraul. Pneum. - HERVEX, 2018, 77–85
- H. A. Al-Turaif, “Surface morphology and chemistry of epoxy-based coatings after exposure to ultraviolet radiation,” Prog. Org. Coatings, 2013, 76, 4, 677–681, doi: 10.1016/j. porgcoat.2012.12.010
- M. Gouda, A. Aljaafari, Y. Al-Fayz, and W. E. Boraie, “Preparation and characterization of some nanometal oxides using microwave technique and their application to cotton fabrics,” J. Nanomater., 2015, doi: 10.1155/2015/586904
- S. Srihasam, K. Thyagarajan, M. Korivi, V. R. Lebaka, and S. P. R. Mallem, “Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties,” Biomolecules, 2020, 10, 1, doi: 10.3390/biom10010089
- I. M. Chung, R. Malathy, S. H. Kim, K. Kalaiselvi, M. Prabakaran, and M. Gopiraman, “Ecofriendly green inhibitor from Hemerocallis fulva against aluminum corrosion in sulphuric acid medium,” J. Adhes. Sci. Technol., 2020, 34, 14, 1483–1506, doi: 10.1080/01694243.2020.1712770
- K. E. Mostafa, “Anti-corrosion nickel / reduced graphene oxide-titanium dioxide coating for mild steel in organic acids,” J. Mater. Environ. Sci., 2020, 10, 2, 141–162
- B. Ren, Y. Wang, and J. Z. Ou, “Engineering two-dimensional metal oxides via surface functionalization for biological applications,” Mater. Chem. B, 2020, doi: 10.1039/C9TB02423A
- B. Polteau, F. Tessier, and L. Cario, “Synthesis of Ni-poor NiO nanoparticles for p-DSSC applications,” Solid State Sci., 2016, 54, 37–42
- M. P. Deshpande, K. N. Patel, V. P. Gujarati, K. Patel, and S. H. Chaki, “Structural, thermal and optical properties of nickel oxide (nio) nanoparticles synthesized by chemical precipitation method,” Adv. Mater. Res., 2016, 1141, 65–71, doi: 10.4028/www.scientific.net/amr.1141.65
- S. Haq et al., “Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. sativus) extract,” Mater. Res. Express, 2021, 8, 5, doi: 10.1088/2053-1591/abfc7c
- A. Singh et al., “Structurally and morphologically engineered single-pot biogenic synthesis of NiO nanoparticles with enhanced photocatalytic and antimicrobial activities,” J. Clean. Prod., 2022, 343, doi: 10.1016/j.jclepro.2022.131026
- A. A. Barzinjy, S. M. Hamad, S. Aydın, M. H. Ahmed, and F. H. S. Hussain, “Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation,” J. Mater. Sci. Mater. Electron., 2020, 31, 14, 11303–11316, doi: 10.1007/s10854-020-03679-y
- R. A. Raj, M. S. AlSalhi, and S. Devanesan, “Microwave-assisted synthesis of nickel oxide nanoparticles using Coriandrum sativum leaf extract and their structural-magnetic catalytic properties,” Materials (Basel)., 2017, 10, 5, doi: 10.3390/ma10050460
- M. Nawaz, R. A. Shakoor, R. Kahraman, and M. F. Montemor, “Cerium oxide loaded with Gum Arabic as environmentally friendly anti-corrosion additive for protection of coated steel,” Mater. Des., 2021, 198, 109361, doi: 10.1016/j.matdes.2020.109361
- S. Sudhasree, A. S. Banu, P. Brindha, and G. A. Kurian, “Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity,” Toxicol. Environ. Chem., 2014, 1–12, doi: 10.1080/02772248.2014.923148
- H. Seifi, T. Gholami, S. Seifi, S. Mehdi, M. Salavati-niasari, and A. Pyrolysis, “A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nano-materials,” J. Anal. Appl. Pyrolysis, 2020, doi: https://doi.org/10.1016/j.jaap.2020.104840
- A. Iqbal, A. U. Haq, G. A. Cerrón-Calle, S. A. R. Naqvi, P. Westerhoff, and S. Garcia-Segura, “Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides,” Catalysts, 2021, 11, 7, doi: 10.3390/catal11070806
- Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S. M. Hosseinpour-Mashkani, and F. Tavakoli, “Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor,” J. Clust. Sci., 2012, 23, 577–583, 2012, doi: 10.1007/s10876-012-0477-8
- T. A. Nguyen, H. Nguyen, T. V. Nguyen, H. Thai, and X. Shi, “Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings,” J. Nanosci. Nanotechnol., 2016, 16, 9, 9874–9881, doi: 10.1166/jnn.2016.12162
- B. Ramezanzadeh, M. M. Attar, and M. Farzam, “A study on the anticorrosion performance of the epoxy-polyamide nanocomposites containing ZnO nanoparticles,” Prog. Org. Coatings, 2011, 72, 3, 410–422, doi: 10.1016/j.porg-coat.2011.05.014
- O. Dagdag et al., “Epoxy resin and TiO2 composite as anticorrosive material for carbon steel in 3 % NaCl medium : Experimental and computational studies,” J. Mol. Liq., 2020, 317, 1–8, doi: 10.1016/j.molliq.2020.114249
- M. Behzadnasab, S. M. Mirabedini, and M. Esfandeh, “Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia,” Corros. Sci., 2013, 75, 134–141, doi: 10.1016/j.corsci.2013.05.024
- W. Yang et al., “Protection of mild steel with molecular engineered epoxy nanocomposite coatings containing corrosion inhibitor functionalized nanoparticles,” Surf. Coatings Technol., 2021, 406, doi: 10.1016/j.surfcoat.2020.126639
- A. El-Faham et al., “Silver-embedded epoxy nanocomposites as organic coatings for steel,” Prog. Org. Coatings, 2018, 123, 209–222, doi: 10.1016/j.porgcoat.2018.07.006
- B. Dojer and J. Kristl, “Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method,” Heliyon, 2017, 1–19, doi: 10.1016/j.heliyon.2017.e00273
- U. K. Panigrahi, V. Sathe, P. D. Babu, A. Mitra, and P. Mallick, “Effect of Mg doping on the improvement of photoluminescence and magnetic properties of NiO nanoparticles,” Nano Express, 2020, 1, 2, doi: 10.1088/2632-959X/aba285
- A. Kotta and H. K. Seo, “Facile synthesis of highly conductive vanadium-doped NiO film for transparent conductive oxide,” Appl. Sci., 2020, 10, 16, 1–11, doi: 10.3390/APP10165415
- T. Nathan, A. Aziz, A. F. Noor, and S. R. S. Prabaharan, “Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties,” J. Solid State Electrochem., 2008, 12, 7–8, 1003–1009, doi: 10.1007/s10008-007-0465-3
- P. Kakisan, K. Karbon, and M. Komposit, “Corrosion protection of carbon steel using polyaniline composite with inorganic pigments,” Sains Malaysiana, 2011, 40, 7, 757–763
- C. Ejileugha, K. M. Ezealisiji, A. N. Ezejiofor, and O. E. Orisakwe, “Microbiologically influenced corrosion: uncovering mechanisms and discovering inhibitor – metal and metal oxide nanoparticles as promising biocorrosion inhibitors,” J. Bio- Tribo-Corrosion, 2021, 7, 3, 1–21, doi: 10.1007/s40735-021-00545-0
- M. L. Zheludkevich, R. Serra, M. F. Montemor, and M. G. S. Ferreira, “Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors,” Electrochem. commun., 2005, 7, 8, 836–840, doi: 10.1016/j. elecom.2005.04.039
- R. F. Sadek, H. A. Farrag, S. M. Abdelsalam, Z. M. H. Keiralla, A. I. Raafat, and E. Araby, “A powerful nano-composite polymer prepared from metal oxide nanoparticles synthesized via brown algae as anti-corrosion and anti-biofilm,” Front. Mater., 2019, 6, 1–17, doi: 10.3389/fmats.2019.00140
- J. R. Xavier, “Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel,” Mater. Sci. Eng. B, 2020, 260, 114639, doi: 10.1016/j.mseb.2020.114639
- L. D. Trino et al., “Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants,” Ceram. Int. J., 2018, 44, 4000–4008, doi: 10. 1016/j.ceramint.2017.11.195
- A. S. Sowmyashree, A. Somya, C. B. P. Kumar, and S. Rao, “Novel nano corrosion inhibitor, integrated zinc titanate nano particles: Synthesis, characterization, thermodynamic and electrochemical studies,” Surfaces and Interfaces, 2021, 22, doi: 10.1016/j.surfin.2020.100812
- K. L. Palanisamy, V. Devabharathi, and N. Meenakshi Sundaram, “Corrosion inhibition studies of mild steel with carrier oil stabilized of iron oxide nanoparticles incorporated into a paint,” Int. J. ChemTech Res., 2015, 7, 4, 1661–1664
- A. U. Chaudhry, V. Mittal, and B. Mishra, “Evaluation of iron nickel oxide nanopowder as corrosion inhibitor: effect of metallic cations on carbon steel in aqueous NaCl,” Corros. Sci. Technol., 2016, 15, 1, 13–17, doi: http://dx.doi.org/10.14773/cst.2016.15.1.13
- I. N. Uzochukwu, I. O. Arukalam, and C. N. Njoku, “Anti- corrosion performance assessment of silane-modified chitosan/epoxy primer coatings on mild steel in saline environment using computational simulation techniques,” J. Mol. Model., 2023, 29, 4, 1–13, doi: 10.1007/s00894-023-05517-4
- B. Liao et al., “Functionalized nanocomposites as corrosion inhibitors,” Funct. Nanomater. Corros. Mitig. Synth. Charact. Appl. Part 10, 2022, doi: 10.1021/bk-2022-1418.ch010
- A. M. Atta, M. A. Ahmed, A. M. El-Saeed, O. M. Abo-Elenien, and M. A. El-Sockary, “Hybrid ZrO2/Cr2O3 epoxy nanocomposites as organic coatings for steel,” Coatings, 2020, 10, 10, 1–12, doi: 10.3390/coatings10100997
- M. D. Kiran, H. K. Govindaraju, and T. Jayaraju, “Evaluation of fracture toughness of epoxy-nickel coated carbon fiber composites with Al2O3 nano filler,” AIP Conf. Proc., 2019, 2057, doi: 10.1063/1.5085573
- H. Yang et al., “Study on high temperature properties of yttrium-modified aluminide coating on K444 alloy by chemical vapor deposition,” Coatings, 2024, 14, 6, 750, doi: 10. 3390/coatings14060750
- N. K. Ngo, S. Shao, H. Conrad, S. F. Sanders, F. D. Souza, and D. Golden, “Synthesis, characterization, and the effects of organo-grafted nanoparticles in nickel coatings for enhanced corrosion protection,” Mater. Today Commun., 2020, 25, 101628, doi: 10.1016/j.mtcomm.2020.101628
- V. P. M. Shajudheen, K. A. Rani, V. S. Kumar, A. U. Maheswari, M. Sivakumar, and S. S. Kumar, “Comparison of anticorrosion studies of titanium dioxide and nickel oxide thin films fabricated by spray coating technique,” Mater. Today Proc., 2018, 5, 2, 8889–8898, doi: 10.1016/j.matpr.2017.12.322
- K. Qaiss, Graphene and nanoparticles hybrid nanocomposites from preparation to applications. Composites Science and Technology, 2021. doi: 10.1007/978-981-33-4988-9
- M. Ibrahim, K. Kannan, H. Parangusan, S. Eldeib, and O. Shehata, “Enhanced corrosion protection of epoxy /ZnONiO nanocomposite coatings on steel,” Coatings, 2020, 10, 783, 1–14, doi:10.3390/coatings10080783
- C. A. Loto, O. O. Joseph, and R. T. Loto, “Inhibition effect of zinc oxide on the electrochemical corrosion of mild steel reinforced concrete in 0.2 M H2SO4,” J. Mater. Environ. Sci., 2016, 7, 3, 915–925
- J. N. Hasnidawani, H. N. Azlina, H. Norita, and N. Samat, “ZnO Nanoparticles for anti-corrosion nanocoating of carbon steel,” Mater. Sci. Forum, 2017, 894, 76–80, doi: 10. 4028/www.scientific.net/MSF.894.76
- R. H. Al-dahiri, A. M. Turkustani, and M. A. Salam, “The application of zinc oxide nanoparticles as an eco- friendly inhibitor for steel in acidic solution,” Int. J. Electrochem. Sci., 2020, 15, 442–457, doi: 10.20964/2020.01.01
- T. W. Quadri, L. O. Olasunkanmi, O. E. Fayemi, and M. M. Solomon, “Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution,” ACS Omega, 2017, doi: 10.1021/acsomega.7b01385
- M. Sudha, S. Surendhiran, V. Gowthambabu, A. Balamurugan, R. Anandarasu, and Y. A. Syed Khadar, “Enhancement of corrosive – resistant behavior of zn and mg metal plates using biosynthesized nickel oxide nanoparticles,” J. Bio-Tribo-Corrosion, 2021, doi: 10.1007/s40735-021-00492-w
- Y. A. S. Khadar et al., “Materials today: proceedings enhancement of corrosion inhibition of mild steel in acidic media by green-synthesized nano-manganese oxide,” Mater. Today Proc., 2021, doi: 10.1016/j.matpr.2021.04.335
- M. Gouda and H. M. Abd El-Lateef, “Novel cellulose derivatives containing metal (Cu, Fe, Ni) oxide nanoparticles as eco-friendly corrosion inhibitors for c-steel in acidic chloride solutions,” Molecules, 2021, 26, 22, doi: 10.3390/molecules26227006
- M. K. Madhup, N. K. Shah, and P. M. Wadhwani, “Investigation of surface morphology, anti-corrosive and abrasion resistance properties of nickel oxide epoxy nanocomposite (NiO-ENC) coating on mild steel substrate,” Prog. Org. Coatings, 2015, 80, 1–10, doi: 10.1016/j.porg-coat.2014.11.007
- H. M. K. Sheit, M. S. Mubarak, M. M. Varusai, and M. Jaaprasadh, “Enhanced anti-corrosion efficiency and anti- microbial properties of green synthesised nickel oxide (NiO) nanoparticles,” Res. Sq., 2023, 1–27
- P. M. Wadhwani, D. G. Ladha, V. K. Panchal, and N. K. Shah, “Enhanced corrosion inhibitive effect of p-methoxy- benzylidene-4,4-dimorpholine assembled on nickel oxide nanoparticles for mild steel in acid medium,” RSC Adv., 2014, 5, 7098–7111, doi: 10.1039/C4RA13390K
- V. M. Shajudheen, V. S. Kumar, A. U. Maheswari, M. Siva-kumar, S. S. Kumar, and K. A. Rani, “Characterization and anticorrosion studies of spray coated nickel oxide (NiO) thin films,” Mater. Today Proc., 2018, 5, 2, 8577–8586, doi: 10.1016/j.matpr.2017.11.555
- M. J. Anjum, H. Ali, W. Q. Khan, J. Zhao, and G. Yasin, Metal/metal oxide nanoparticles as corrosion inhibitors. Elsevier Inc., 2020. doi: 10.1016/B978-0-12-819359-4.00011-8
- T. Naseem and T. Durrani, “The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review,” Environ. Chem. Ecotoxicol., 2020, doi: 10.1016/j.enceco.2020.12.001
- G. Bystrzejewska-Piotrowska, J. Golimowski, and P. L. Urban, “Nanoparticles: their potential toxicity, waste and environmental management,” Waste Manag., 2009, 29, 9, 2587–2595, doi: 10.1016/j.wasman.2009.04.001
- A. M. Negrescu, M. S. Killian, S. N. V Raghu, P. Schmuki, A. Mazare, and A. Cimpean, “Metal oxide nanoparticles: review of synthesis, characterization and biological effects,” J. Funct. Biomater., 2022, 13, 274, 1–47, doi: https://doi.org/10.3390/jfb13040274
- R. C. Puerari et al., “Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri,” Ecotoxicol. Environ. Saf., 2016, 128, 36–43, doi: 10.1016/j.ecoenv.2016.02.011
- U. R. Sharma and N. Sharma, “Green synthesis, anti-cancer and corrosion inhibition activity of Cr2O3 nanoparticles,” Biointerface Res. Appl. Chem., 2021, 11, 1, 8402–8412, doi: 10.33263/BRIAC111.84028412
- Z. T. Khodair, A. A. Khadom, and H. A. Jasim, “Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views,” J. Mater. Res. Technol., 2018, 1–12, doi: 10.1016/j.jmrt.2018.03.003
- S. G. Firisa, G. G. Muleta, and A. A. Yimer, “Synthesis of nickel oxide nanoparticles and copper-doped nickel oxide nanocomposites using phytolacca dodecandra l ’ herit leaf extract and evaluation of its antioxidant and photocatalytic activities,” ACS Omega, 2022, 7, 44720–44732, doi: 10. 1021/acsomega.2c04042
- D. R. Askeland and W. J. Wright, The Science and Engineering of Materials, Seventh Ed. Boston, MA 02210 USA: Global Engineering: Timothy L. Anderson Development, 2014, www.cengage.com/highered
- O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, “Chromate replacement: what does the future hold?,” npj Mater. Degrad., 2018, 2, 1, 23–25, doi: 10.1038/s41529-018-0034-5
- I. Milošev, “Contemporary modes of corrosion protection and functionalization of materials,” Acta Chim. Slov, 2019, 66, 511–533, doi: 10.17344/acsi.2019.5162
- S. L. More, M. Kovochich, T. Lyons-Darden, M. Taylor, A. M. Schulte, and A. K. Madl, “Review and evaluation of the potential health effects of oxidic nickel nanoparticles,” Nanomaterials, 2021, 11, 3, 1–35, doi: 10.3390/nano 11030642
- A. Ghosal, S. Iqbal, and S. Ahmad, “NiO nano filler dispersed hybrid Soy epoxy anticorrosive coatings,” Prog. Org. Coatings, 2019, 133, 61–76, doi: 10.1016/j.porgcoat.2019.04.029
- S. Mallakpour and M. Madani, “A review of current coupling agents for modification of metal oxide nanoparticles,” Prog. Org. Coatings, 2015, 86, 194–207, doi: 10.1016/j. porgcoat.2015.05.023
- S. Rajendran, Nanoparticle-based corrosion inhibitors and self-assembled monolayers. Woodhead Publishing Limited, 2012, doi: 10.1533/9780857095800.2.283
- S. Simcha, A. Dotan, S. Kenig, and H. Dodiuk, “Characterization of hybrid epoxy nanocomposites,” Nanomaterials, 2012, 2, 4, 348–365, doi: 10.3390/nano2040348
- S. L. De Armentia, M. Pantoja, J. Abenojar, and M. A. Martinez, “Development of silane-based coatings with zirconia,” Coatings, 2018, doi: 10.3390/coatings8100368
- E. Grassini, M. Buzzi, B. Leporini, and A. Vozna, “A systematic review of chatbots in inclusive healthcare: insights from the last 5 years,” Univers. Access Inf. Soc., 2024, doi: 10.1007/s10209-024-01118-x
