References
- Abdel-Latif H.M.R., Khalil R.H., Saad T.T., El-Bably R.Y.: Identification and molecular characterization of Yersinia ruckeri isolated from mass mortalities of cultured Nile tilapia at Kafr El-Sheikh governorate. Glob J Fish Aquac Res 2014, 1, 45–56.
- Alfonso S., Fiocchi E., Toomey L., Boscarato M., Manfrin A., Dimitroglou A., Papaharisis L., Passabi E., Stefani A., Lembo G., Carbonara P.: Comparative analysis of blood protein fractions in two Mediterranean farmed fish: Dicentrarchus labrax and Sparus aurata. BMC Vet Res 2024, 20, 322, doi: 10.1186/s12917-024-04182-w.
- Austin B., Austin D.A.: Bacterial fish pathogens: disease of farmed and wild fish, Sixth Edition, Springer Nature, Berlin, Germany, 2016, doi: 10.1007/978-3-319-32674-0.
- Bastardo A., Ravelo C., Romalde J.L.: Multilocus sequence typing reveals high genetic diversity and epidemic population structure for the fish pathogen Yersinia ruckeri. Environ Microbiol 2012, 14, 1888–1897, doi: 10.1111/j.1462-2920.2012.02735.x.
- Chaban B., Hughes H.V., Beeby M.: The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol 2015, 46, 91–103, doi: 10.1016/j.semcdb.2015.10.032.
- Chen L., Zheng D., Liu B., Yang J., Jin Q.: VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 2016, 44, 694–697, doi: 10.1093/nar/gkv1239.
- Clausen P.T., Aarestrup F.M., Lund O.: Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform 2018, 19, 1–8, doi: 10.1186/s12859-018-2336-6.
- Cornelis G.R., Boland A., Boyd A.P., Geuijen C., Iriarte M., Neyt C., Sory M.P., Stainier I.: The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 1998, 62, 13151352, doi: 10.1128/mmbr.62.4.1315–1352.1998.
- D’Agaro E., Gibertoni P., Esposito S.: Recent trends and economic aspects in the rainbow trout (Oncorhynchus mykiss) sector. Appl Sci 2022, 12, 8773, doi: 10.3390/app12178773.
- Droshnev A.E.: Evaluation of the effect of fish yersiniosis on the course of antioxidant protection processes in trout. IOP Conf Ser: Earth Environ Sci 2020, 548, 042013, doi: 10.1088/17551315/548/4/042013.
- Guijarro J.A., García-Torrico A.I., Cascales D., Méndez J.: The infection process of Yersinia ruckeri: reviewing the pieces of the jigsaw puzzle. Front Cell Infect Microbiol 2018, 8, 218, doi: 10.3389/fcimb.2018.00218.
- Hall M., Chattaway M.A., Reuter S., Savin C., Strauch E., Carniel E., Connor T., Van Damme I., Rajakaruna L., Rajendram D., Jenkins C., Thomson N.R., McNally A.: Use of whole-genus genome sequence data to develop a multilocus sequence typing tool that accurately identifies Yersinia isolates to the species and subspecies levels. J Clin Microbiol 2015, 53, 35–42, doi: 10.1128/jcm.02395-14.
- Horne M.T., Barnes A.C.: Enteric redmouth disease (Yersinia ruckeri). In: Fish Diseases and Disorders, Volume 3: Viral, Bacterial and Fungal Infections, edited by P.T.K. Woo, D.W. Bruno, CABI, Wallingford, UK, 1999, pp. 455–477, doi: 10.1079/9781845935542.0484.
- Jolley K.A., Bray J.E., Maiden M.C.: Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res 2018, 3, 124, doi: 10.12688/wellcomeopenres.14826.1.
- Jozwick A.K., LaPatra S.E., Graf J., Welch T.J.: Flagellar regulation mediated by the Rcs pathway is required for virulence in the fish pathogen Yersinia ruckeri. Fish Shellfish Immunol 2019, 91, 306–314, doi: 10.1016/j.fsi.2019.05.036.
- Kumar G., Hummel K., Welch T.J., Razzazi-Fazeli E., El-Matbouli M.: Global proteomic profiling of Yersinia ruckeri strains. Vet Res 2017, 48, 1–11, doi: 10.1186/s13567-017-0460-3.
- Kumar G., Menanteau-Ledouble S., Saleh M., El-Matbouli M.: Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Vet Res 2015, 46, 1–10, doi: 10.1186/s13567-015-0238-4.
- Lian S., Luo Y., Chen Z., Wei X., Liu J., Zhu G., Xia P.: Deficiency of the flagellin subunit FliC exacerbates the pathogenicity of extraintestinal pathogenic Escherichia coli in BALB/c mice by inducing a more intense inflammation. Int J Biol Macromol 2025, 289, 138761, doi: 10.1016/j.ijbiomac.2024.138761.
- Liu B., Zheng D., Jin Q., Chen L., Yang J.: VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019, 47, 687–692, doi: 10.1093/nar/gky1080.
- Minnich S.A., Rohde H.N.: Chapter 27, A Rationale for Repression and/or Loss of Motility by Pathogenic Yersinia in the Mammalian Host. In: The Genus Yersinia. Advances In Experimental Medicine And Biology, Volume 603, edited by R.D. Perry R.D., J.D. Fetherston, Springer, New York, NY, USA, 2007, 298–311, doi: 10.1007/978-0-387-72124-8_27.
- Olsen J.E., Hoegh-Andersen K.H., Casadesús J., Rosenkrantz J.T., Chadfield M.S., Thomsen L.E.: The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. BMC Microbiol 2013, 13, 1–11, doi: 10.1186/1471-2180-13-67.
- Pajdak J., Terech-Majewska E., Platt-Samoraj A., Schulz P., Siwicki A.K., Szweda W.: Characterization of pathogenic Yersinia ruckeri strains and their importance in rainbow trout immunoprophylaxis. Med Weter 2017, 73, 579–584, doi: 10.21521/mw.5767.
- Pajdak-Czaus J., Schulz P., Terech-Majewska E., Szweda W., Siwicki A.K., Platt-Samoraj A.: Influence of infectious pancreatic necrosis virus and Yersinia ruckeri co-infection on a non-specific immune system in rainbow trout (Oncorhynchus mykiss). Animals 2021, 11, 1974, doi: 10.3390/ani11071974.
- Philip N.H., Brodsky I.E.: Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol 2012, 2, 149, doi: 10.3389/fcimb.2012.00149.
- Quijada N.M., Rodríguez-Lázaro D., Eiros J.M., Hernández M.: TORMES: an automated pipeline for whole bacterial genome analysis. Bioinformatics 2019, 35, 4207–4212, doi: 10.1093/bioinformatics/btz220.
- Raida M.K., Buchmann, K.: Development of adaptive immunity in rainbow trout, Oncorhynchus mykiss (Walbaum) surviving an infection with Yersinia ruckeri. Fish Shellfish Immunol 2008, 25, 533–541, doi: 10.1016/j.fsi.2008.07.008.
- Salamone G.V., Petracca Y., Bass J.I.F., Rumbo M., Nahmod K.A., Gabelloni M.L., Vermeulen M.E., Matteo M.J., Geffner J.R., Trevani A.S.: Flagellin delays spontaneous human neutrophil apoptosis. Lab Investig 2010, 90, 1049–1059, doi: 10.1038/labinvest.2010.77.
- Soto-Dávila M., Rodríguez-Cornejo T., Benito V.W., Rodríguez-Ramos T., Mahoney G., Supinski R., Heath G., Dang X., Valle F.M., Hurtado C., Llanco L.A., Serrano-Martinez E., Dixon B.: Innate and adaptive immune response of Rainbow trout (Oncorhynchus mykiss) naturally infected with Yersinia ruckeri. Fish Shellfish Immunol 2024, 151, 109742, doi: 10.1016/j.fsi.2024.109742.
- Vijay-Kumar M., Wu H., Jones R., Grant G., Babbin B., King T.P., Kelly D., Gewitz A.T., Neish A.S.: Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am J Pathol 2006, 169, 1686–1700, doi: 10.2353/ajpath.2006.060345.
- Wang K.Y., Liu T., Wang J., Chen D.F., Wu X.J., Jiang J., Liu J.X.: Complete genome sequence of the fish pathogen Yersinia ruckeri strain SC09, isolated from diseased Ictalurus punctatus in China. Genome Announc 2015, 3, e01327-14, doi: 10.1128/genomeA.01327-14.
- Wangkahart E., Scott C., Secombes C.J., Wang T.: Re-examination of the rainbow trout (Oncorhynchus mykiss) immune response to flagellin: Yersinia ruckeri flagellin is a potent activator of acute phase proteins, anti-microbial peptides and pro-inflammatory cytokines in vitro. Dev Comp Immunol 2016, 57, 75–87, doi: 10.1016/j.dci.2015.12.017.
- Wrobel A., Leo J.C., Linke D.: Overcoming fish defences: the virulence factors of Yersinia ruckeri. Genes 2019, 10, 700, doi: 10.3390/genes10090700.
- Yeoh B.S., Gewirtz A.T., Vijay-Kumar M.: Adaptive immunity induces tolerance to flagellin by attenuating TLR5 and NLRC4-mediated innate immune responses. Front Cell Infect Microbiol 2019, 9, 29, doi: 10.3389/fcimb.2019.00029.
- Zheng Y., Zhang Q., Zhu Y., Zhang J., Geng M., Lu Y., Wei X.: Immunological process of T cells and IgM+ B cells in head kidney and peripheral blood in early vertebrate Nile tilapia. Comp Immunol Rep 2024, 8, 200189, doi: 10.1016/j.cirep.2024.200189.
- Zhou Z., Alikhan N.-F., Mohamed K., Fan Y., Brown D., Chattaway D., Dallman T., Delahay R., Kornschober C., Pietzka A., Malorny B., Petrovska L., Davies R., Robertson A., Tyne W., Weill F.-X., Accou-Demartin M., Williams N., Achtman M.: The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020, 30, 138–152, doi: 10.1101/gr.251678.119.