Have a personal or library account? Click to login
Proteomic insights into nematode-trapping fungi Arthrobotrys oligospora after their response to chitin Cover

Proteomic insights into nematode-trapping fungi Arthrobotrys oligospora after their response to chitin

Open Access
|Feb 2025

References

  1. Andersson K.M., Meerupati T., Levander F., Friman E., Ahrén D., Tunlid A.: Proteome of the nematode-trapping cells of the fungus <em>Monacrosporium haptotylum</em>. Appl Environ Microbiol 2013, 79, 4993–5004, doi: <a href="https://doi.org/10.1128/AEM.01390-13." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/AEM.01390-13.</a>
  2. Bai L., Liu L., Esquivel M., Tardy B.L., Huan S., Niu X., Liu S., Yang G., Fan Y., Rojas O.J.: Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022, 122, 11604–11674, doi: <a href="https://doi.org/10.1021/acs.chemrev.2c00125." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acs.chemrev.2c00125.</a>
  3. Bai N., Xie M., Liu Q., Zhu Y., Yang X., Zhang K.Q., Yang J.: AoMedA has a complex regulatory relationship with AoBrlA, AoAbaA, and AoWetA in conidiation, trap formation, and secondary metabolism in the nematode-trapping fungus <em>Arthrobotrys oligospora</em>. Appl Environ Microbiol 2023, 89, e0098323, doi: <a href="https://doi.org/10.1128/aem.00983-23." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/aem.00983-23.</a>
  4. Bu D., Luo H., Huo P., Wang Z., Zhang S., He Z., Wu Y., Zhao L., Liu J., Guo J., Fang S., Cao W., Yi L., Zhao Y., Kong L.: KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 2021, 49, W317–W325, doi: <a href="https://doi.org/10.1093/nar/gkab447." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/nar/gkab447.</a>
  5. Chen Q., Peng D.: Nematode Chitin and Application. Adv Exp Med Biol 2019, 1142, 209–219, doi: <a href="https://doi.org/10.1007/978-981-13-7318-3_10." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-981-13-7318-3_10.</a>
  6. Chen W., Cao P., Liu Y., Yu A., Wang D., Chen L., Sundarraj R., Yuchi Z., Gong Y., Merzendorfer H., Yang Q.: Structural basis for directional chitin biosynthesis. Nature 2022, 610, 402–408, doi: <a href="https://doi.org/10.1038/s41586-022-05244-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41586-022-05244-5.</a>
  7. Craig T.M.: Gastrointestinal Nematodes, Diagnosis and Control. Vet Clin North Am Food Anim Pract 2018, 34, 185–199, doi: <a href="https://doi.org/10.1016/j.cvfa.2017.10.008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cvfa.2017.10.008.</a>
  8. Deng J.J., Shi D., Mao H.H., Li Z.W., Liang S., Ke Y., Luo X.C.: Heterologous expression and characterization of an antifungal chitinase (Chit46) from <em>Trichoderma harzianum</em> GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol 2019, 134, 113–121, doi: <a href="https://doi.org/10.1016/j.ijbiomac.2019.04.177." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijbiomac.2019.04.177.</a>
  9. Dias M.C., Paz-Silva A., de Carvalho L.M.M.: The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals – A systematic review. Vet Parasitol 2020, 283, 109173, doi: <a href="https://doi.org/10.1016/j.vetpar.2020.109173." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetpar.2020.109173.</a>
  10. Dyary H.O.: Anthelmintic resistance of gastrointestinal nematodes in sheep in Piramagroon sub-district, Sulaymaniyah/Iraq. Trop Biomed 2018, 35, 373–382.
  11. Freitas L.A., Savegnago R.P., Menegatto L.S., Bem R.D.D., Stafuzza N.B., Paz A.C.A.R., Pires B.V., Costa R.L.D., Paz C.C.P.: Cluster analysis to explore additive-genetic patterns for the identification of sheep resistant, resilient and susceptible to gastrointestinal nematodes. Vet Parasitol 2022, 301, 109640, doi: <a href="https://doi.org/10.1016/j.vetpar.2021.109640." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetpar.2021.109640.</a>
  12. Gong S., Meng Q., Qiao J., Huang Y., Zhong W., Zhang G., Zhang K., Li N., Shang Y., Li Z., Cai X.: Biological Characteristics of Recombinant <em>Arthrobotrys oligospora</em> Chitinase AO-801. Korean J Parasitol 2022, 60, 345–352, doi: <a href="https://doi.org/10.3347/kjp.2022.60.5.345." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3347/kjp.2022.60.5.345.</a>
  13. Hou B., Yong R., Wuen J., Zhang Y., Buyin B., Subu D., Zha H., Li H., Hasi S.: Positivity Rate Investigation and Anthelmintic Resistance Analysis of Gastrointestinal Nematodes in Sheep and Cattle in Ordos, China. Animals 2022, 12, 891, doi: <a href="https://doi.org/10.3390/ani12070891." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ani12070891.</a>
  14. Jansson H.B., Nordbring-Hertz B.: Interactions between nematophagous fungi and plant-parasitic nematodes: attraction, induction of trap formation and capture. Nematologica 1980, 26, 383–389, doi: <a href="https://doi.org/10.1163/187529280X00323." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1163/187529280X00323.</a>
  15. Kaplan R.M.: Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock. Vet Clin North Am Food Anim Pract 2020, 36, 17–30, doi: <a href="https://doi.org/10.1016/j.cvfa.2019.12.001." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cvfa.2019.12.001.</a>
  16. Li N., Sun Y., Liu Y., Wei L., Zhang J., Li N., Sun D., Jiao J., Zuo Y., Li R., Cai X., Qiao J., Meng Q.: Expression profiles and characterization of microRNAs responding to chitin in <em>Arthrobotrys oligospora</em>. Arch Microbiol 2024, 206, 220, doi: <a href="https://doi.org/10.1007/s00203-024-03949-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00203-024-03949-x.</a>
  17. Liang L., Wu H., Liu Z., Shen R., Gao H., Yang J., Zhang K.: Proteomic and transcriptional analyses of <em>Arthrobotrys oligospora</em> cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl Microbiol Biotechnol 2013, 97, 8683–8692, doi: <a href="https://doi.org/10.1007/s00253-013-5178-1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00253-013-5178-1.</a>
  18. Lin H.C., de Ulzurrun G.V., Chen S.A., Yang C.T., Tay R.J., Iizuka T., Huang T.Y., Kuo C.Y., Gonçalves A.P., Lin S.Y., Chang Y.C., Stajich J.E., Schwarz E.M., Hsueh Y.P.: Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus. PLoS Biol 2023, 21, e3002400, doi: <a href="https://doi.org/10.1371/journal.pbio.3002400." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pbio.3002400.</a>
  19. Liu K., Tian J., Xiang M., Liu X.: How carnivorous fungi use three-celled constricting rings to trap nematodes. Protein Cell 2012, 3, 325–328, doi: <a href="https://doi.org/10.1007/s13238-012-2031-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13238-012-2031-8.</a>
  20. Liu T., Tian D.W., Zou L.J., Liu F.Y., Can Q.Y., Yang J.K., Xu J.P., Huang X.W., Xi J.Q., Zhu M.L., Mo M.H., Zhang K.Q.: Quantitative proteomics revealed partial fungistatic mechanism of ammonia against conidial germination of nematode-trapping fungus <em>Arthrobotrys oligospora</em> ATCC24927. Int J Biochem Cell Biol 2018, 98, 104–112, doi: <a href="https://doi.org/10.1016/j.biocel.2018.03.009." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biocel.2018.03.009.</a>
  21. Liu T., Zou L.J., Tian D.W., Can Q.Y., Zhu M.L., Mo M.H., Zhang K.Q.: Proteomic changes in <em>Arthrobotrys oligospora</em> conidia in response to benzaldehyde-induced fungistatic stress. J Proteomics 2019, 192, 358–365, doi: <a href="https://doi.org/10.1016/j.jprot.2018.09.016." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jprot.2018.09.016.</a>
  22. Lu Z., Zhu Q., Bai Y., Zhao X., Wang H., Peng X., Luo Z., Zhang Y.: A fungal pathogen secretes a cell wall-associated β-N-acetylhexosaminidase that is co-expressed with chitinases to contribute to infection of insects. Pest Manag Sci 2024, 80, 4699–4713, doi: <a href="https://doi.org/10.1002/ps.8185." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/ps.8185.</a>
  23. Mendoza-de Gives P., Braga F.R., de Araújo J.V.: Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications. Biocontrol Sci Technol 2022, 32, 777–793, doi: <a href="https://doi.org/10.1080/09583157.2022.2028725." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/09583157.2022.2028725.</a>
  24. Mohan K., Ganesan A.R., Ezhilarasi P.N., Kondamareddy K.K., Rajan D.K., Sathishkumar P., Rajarajeswaran J., Conterno L.: Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022, 287, 119349, doi: <a href="https://doi.org/10.1016/j.carbpol.2022.119349." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.carbpol.2022.119349.</a>
  25. Moussian B.: Chitin: Structure, Chemistry and Biology. Adv Exp Med Biol 2019, 1142, 5–18, doi: <a href="https://doi.org/10.1007/978-981-13-7318-3_2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-981-13-7318-3_2.</a>
  26. Mukta J.A., Rahman M., Sabir A.A., Gupta R., Islam M.T.: Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol 2017, 11, 9–18, doi: <a href="https://doi.org/10.1016/j.bcab.2017.05.005." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bcab.2017.05.005.</a>
  27. Muschiol J., Vuillemin M., Meyer A.S., Zeuner B.: β-N-Acetylhexosaminidases for Carbohydrate Synthesis <em>via</em> Trans-Glycosylation. Catalysts 2020, 10, 365, doi: <a href="https://doi.org/10.3390/catal10040365." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/catal10040365.</a>
  28. Niu X.M., Zhang K.Q.: <em>Arthrobotrys oligospora</em>: a model organism for understanding the interaction between fungi and nematodes. Mycology 2011, 2, 59–78, doi: <a href="https://doi.org/10.1080/21501203.2011.562559." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/21501203.2011.562559.</a>
  29. Nordbring-Hertz B.: Nematode-induced morphogenesis in the predacious fungus <em>Arthrobotrys oligospora</em>. Nematologica 1977, 23, 443–451, doi: <a href="https://doi.org/10.1163/187529277X00372." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1163/187529277X00372.</a>
  30. Russell G.S.: A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields. Agronomy 2013, 3, 757–793, doi: <a href="https://doi.org/10.3390/agronomy3040757" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/agronomy3040757</a>
  31. Soares F.E.F., Ferreira J.M., Genier H.L.A., Al-Ani L.K.T., Aguilar-Marcelino L.: Biological control 2.0: Use of nematophagous fungi enzymes for nematode control. J Nat Pestic Res 2023, 4, 100025, doi: <a href="https://doi.org/10.1016/j.napere.2023.100025." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.napere.2023.100025.</a>
  32. Steinfeld L., Vafaei A., Rösner J., Merzendorfer H.: Chitin Prevalence and Function in Bacteria, Fungi and Protists. Adv Exp Med Biol 2019, 1142, 19–59, doi: <a href="https://doi.org/10.1007/978-981-13-7318-3_3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-981-13-7318-3_3.</a>
  33. Tikhonov V.E., Lopez-Llorca L.V., Salinas J., Jansson H.B.: Purification and characterization of chitinases from the nematophagous fungi <em>Verticillium chlamydosporium</em> and <em>V. suchlasporium</em>. Fungal Genet Biol 2002, 35, 67–78, doi: <a href="https://doi.org/10.1006/fgbi.2001.1312." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/fgbi.2001.1312.</a>
  34. Tyanova S., Temu T., Cox J.: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Prot 2016, 11, 2301–2319, doi: <a href="https://doi.org/10.1038/nprot.2016.136." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/nprot.2016.136.</a>
  35. Uniprot Consortium: UniProt: the Universal Protein Resource. Nucleic Acids Res 2023, 51, D523–D531, doi: <a href="https://doi.org/10.1093/nar/gkac1052." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/nar/gkac1052.</a>
  36. Vande Velde F., Charlier J., Claerebout E.: Farmer Behavior and Gastrointestinal Nematodes in Ruminant Livestock-Uptake of Sustainable Control Approaches. Front Vet Sci 2018, 5, 255, doi: <a href="https://doi.org/10.3389/fvets.2018.00255." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fvets.2018.00255.</a>
  37. Wang R.B., Yang J.K., Lin C., Zhang Y., Zhang K.Q.: Purification and characterization of an extracellular serine protease from the nematode-trapping fungus <em>Dactylella shizishanna</em>. Lett Appl Microbiol 2006, 42, 589–594, doi: <a href="https://doi.org/10.1111/j.1472-765X.2006.01908.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1472-765X.2006.01908.x.</a>
  38. Wang W., Liu Y., Duan S., Bai N., Zhu M., Yang J.: Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in <em>Arthrobotrys oligospora</em>. Microbiol Res 2024, 278, 127516, doi: <a href="https://doi.org/10.1016/j.micres.2023.127516." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.micres.2023.127516.</a>
  39. Winkler A.J., Dominguez-Nuñez J.A., Aranaz I., Poza-Carrión C., Ramonell K., Somerville S., Berrocal-Lobo M.: Short-Chain Chitin Oligomers: Promoters of Plant Growth. Mar Drugs 2017, 15, 40, doi: <a href="https://doi.org/10.3390/md15020040." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/md15020040.</a>
  40. Yang J., Tian B., Liang L., Zhang K.Q.: Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 2007, 75, 21–31, doi: <a href="https://doi.org/10.1007/s00253-007-0881-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00253-007-0881-4.</a>
  41. Yang J., Wang L., Ji X., Feng Y., Li X., Zou C., Xu J., Ren Y., Mi Q., Wu J., Liu S., Liu Y., Huang X., Wang H., Niu X., Li J., Liang L., Luo Y., Ji K., Zhou W., Yu Z., Li G., Liu Y., Li L., Qiao M., Feng L., Zhang K.Q.: Genomic and proteomic analyses of the fungus <em>Arthrobotrys oligospora</em> provide insights into nematode-trap formation. PLoS Pathog 2011, 7, e1002179, doi: <a href="https://doi.org/10.1371/journal.ppat.1002179." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.ppat.1002179.</a>
  42. Yang J., Yu Y., Li J., Zhu W., Geng Z., Jiang D., Wang Y., Zhang K.Q.: Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus <em>Arthrobotrys oligospora</em>. Arch Microbiol 2013, 195, 453–462, doi: <a href="https://doi.org/10.1007/s00203-013-0894-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00203-013-0894-6.</a>
  43. Yuan W., Lu K., Li H., Liu J., He C., Feng J., Zhang X., Mao Y., Hong Y., Zhou Y., Lu J., Jin Y., Lin J.: Seasonal Dynamics of Gastrointestinal Nematode Infections of Goats and Emergence of Ivermectin Resistance in <em>Haemonchus contortus</em> in Hubei Province, China. Acta Parasitol 2019, 64, 638–644, doi: <a href="https://doi.org/10.2478/s11686-019-00067-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/s11686-019-00067-3.</a>
  44. Zhang F., Boonmee S., Monkai J., Yang X.Y., Xiao W.: <em>Drechslerella daliensis</em> and <em>D. xiaguanensis</em> (Orbiliales, Orbiliaceae), two new nematode-trapping fungi from Yunnan, China. Biodivers Data J 2022, 10, e96642, doi: <a href="https://doi.org/10.3897/BDJ.10.e96642." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3897/BDJ.10.e96642.</a>
  45. Zhou L., He Z., Zhang K., Wang X.: Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling. J Fungi 2023, 9, 1183, doi: <a href="https://doi.org/10.3390/jof9121183." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/jof9121183.</a>
Language: English
Page range: 71 - 82
Submitted on: Jul 3, 2024
Accepted on: Feb 3, 2025
Published on: Feb 25, 2025
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Jiahua Zhang, Lixiang Wei, Huimei Zhang, Xixi Ma, Yansen Sun, Ruobing Li, Chengzhi Zhang, Xuepeng Cai, Jun Qiao, Qingling Meng, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution 4.0 License.