Have a personal or library account? Click to login
Distribution, lipophilicity and tissue half-life as key factors in sulphonamide clearance from porcine tissues Cover

Distribution, lipophilicity and tissue half-life as key factors in sulphonamide clearance from porcine tissues

Open Access
|Jan 2025

References

  1. Abdallah H., Arnaudguilhem C., Lobinski R., Jaber F.: A multi-residue analysis of sulphonamides in edible animal tissues using QuEChERS extraction and HPLC-MS/MS. Anal Methods 2015, 7, 1549–1557, doi: 10.1039/c4ay01727g.
  2. Almeida S.A.A., Moreira F.T.C., Heitor A.M., Montenegro M.C.B.S.M., Aguilar G.G., Sales M.G.F.: Sulphonamide-imprinted sol-gel materials as ionophores in potentiometric transduction. Mater Sci Eng C 2011, 31, 1784–1790, doi: 10.1016/j.msec.2011.08.011.
  3. Antimicrobial Resistance Collaborators: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655, doi: 10.1016/S0140-6736(21)02724-0, Erratum in Lancet 2022, 400, 1102.
  4. Arroyo-Manzanares N., Lara F.J., Airado-Rodriguez D., Gamiz-Gracia L., Garcia-Campana A.M.: Determination of sulfonamides in serum by on-line solid-phase extraction coupled to liquid chromatography with photoinduced fluorescence detection. Talanta 2015, 138, 258–262, doi: 10.1016/j.talanta.2015.03.012.
  5. Burmańczuk A., Milczak A., Grabowski T., Osypiuk M., Kowalski C.: The using of a piglets as a model for evaluating the dipyrone hematological effects. BMC Vet Res 2016, 12, 263, doi: 10.1186/s12917-016-0891-5.
  6. Burmańczuk A., Roliński Z., Kowalski C., Zań R.: Pharmacokinetic - pharmacodynamic model and ampicillin residue depletion after intramammary administration in cows. J Vet Res 2016, 60,169–176, doi: 10.1515/jvetres-2016-0025.
  7. Chantziaras I., Boyen F., Callens B., Dewulf J.: Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing: a report on seven countries. J Antimicrob Chemother 2014, 69, 827-34, doi: 10.1093/jac/dkt443.
  8. Chen L., Wang X., Lu W., Wu X., Li J.: Molecular imprinting: perspectives and applications. Chem Soc Rev 2016, 45, 2137– 2211, doi: 10.1039/c6cs00061d.
  9. Commission of the European Communities: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). OJEC L 2002, 221, 45, 17/08/2002, 8–36.
  10. Dibbern D.A.Jr., Montanaro A.: Allergies to sulfonamide antibiotics and sulfur-containing drugs. Ann Allergy Asthma Immunol 2008, 100, 91–100, doi: 10.1016/s1081-1206(10)60415-2.
  11. European Commission: Commission Regulation No 37/2010/EC of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. OJEU L 2010, 15, 53, 20/01/2010, 1–72.
  12. European Medicines Agency, Committee for Medical Products for Veterinary Use (CVMP), Committee for Medical Products for Human Use (CHMP): EMA/CVMP/CHMP/682198/2017-Categorisation of antibiotics in the European Union. EMA, Amsterdam, 2019.
  13. European Medicines Evaluation Agency, Committee for Medical Products for Veterinary Use (CVMP): EMEA/CVMP/036/95-FINAL Note for Guidance on Approach toward harmonization of withdrawal period. EMEA, London, 1997.
  14. European Medicines Evaluation Agency, Committee for Medical Products for Veterinary Use (CVMP), Veterinary International Conference on Harmonisation (VICH): EMEA/CVMP/590/98-Final VICH GL1 Validation of analytical procedures: definition and terminology - Scientific guideline and EMEA/CVMP/591/98-Final VICH GL2: Validation of analytical procedures: Methodology - Step 7 consensus guideline. EMEA, London, 1998.
  15. European Medicines Evaluation Agency, Committee for Veterinary Medical Products: EMEA/026/95 Sulphonamides (2) Summary Report. EMEA, London, 1995.
  16. European Parliament and the Council of the European Union: Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. OJ EC L 2001, 311, 45, 28/11/2001, 67–128.
  17. Food and Agriculture Organization of the United Nations: FAO, Rome, Italy, 2020, http://www.fao.org/faostat/en/#data/QCL.
  18. Food and Drug Administration: United States Code of Federal Regulations Title 21, Part 556, Tolerances for residues of new animal drugs in food. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-E/part-556#part-556, FDA, Silver Springs, MD, USA, 2019.
  19. Fuh M.R.S., Chu S.Y.: Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis. Anal Chim Acta 2003, 499, 215–221, doi: 10.1016/S0003-2670(03)00721-9.
  20. Gao R., Zhang J., He X., Chen L., Zhang Y.: Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem 2010, 398, 451–461, doi: 10.1007/s00216-010-3909-z.
  21. Grabowski T., Jaroszewski J.J., Feder M., Piotrowski W.: Qualitative structure residue relationship analysis in the determination of the maximum residue limit of veterinary drugs. Chemosphere 2012, 87, 312–318, doi: 10.1016/j.chemosphere.2011.12.003.
  22. Grabowski T., Jaroszewski J.J., Gad S.C., Feder M.: Correlation between in silico physicochemical characteristics of drugs and their mean residence time in human and dog. Int J Toxicol 2012, 31, 25–33, doi: 10.1177/1091581811429865.
  23. Grabowski T., Tomczyk A., Wolc A., Gad S.C.: Between Biological Relevancy and Statistical Significance – Step for Assessment Harmonization. Am J Biomed Sci Res 2021, 13, 517– 522, doi: 10.34297/AJBSR.2021.13.001908.
  24. Haupt K.: Imprinted polymers—tailor-made mimics of antibodies and receptors. Chem Commun 2003, 171–178, doi: 10.1039/b207596b.
  25. He C., Long Y., Pan J., Li K., Liu F.: Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Biophys Methods 2007, 70, 133–150, doi: 10.1016/j.jbbm.2006.07.005.
  26. He J., Wang S., Fang G., Zhu H., Zhang Y.: Molecularly imprinted polymer online solid-phase extraction coupled with high-performance liquid chromatography-UV for the determination of three sulfonamides in pork and chicken. J Agric Food Chem 2008, 56, 2919–2925, doi: 10.1021/jf703680q.
  27. He J., Zhu Q., Deng Q.: Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochim Acta A Mol Biomol Spectrosc 2007, 67, 1297–1305, doi: 10.1016/j.saa.2006.09.040.
  28. He X., Tan L., Wu W., Wang J.: Determination of sulfadiazine in eggs using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. J Sep Sci 2016, 39, 2204–2212, doi: 101002/jssc.201600233.
  29. Huang Y.H., Xu Y., He Q.H., Cao Y.S., Du B.B.: Determination of sulfadiazine residues in pork by molecular imprinted column coupling with high performance liquid chromatography. Chin J Anal Chem 2012, 40, 1011–1016, doi: 10.1016/s1872-2040(11)60558-6.
  30. Joint FAO/WHO Expert Committee on Food Additives: FAO Food and Nutrition Paper 41/16: Residues of some veterinary drugs in animals and foods. Monograph prepared by the sixty-second meeting of the Joint FAO/WHO Expert Committee on Food Additives Rome, 4–12 February 2004.
  31. Kechagia M., Samanidou V., Kabir A., Furton K.G.: One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection. J Sep Sci 2018, 41, 723–731, doi: 10.1002/jssc.201701205.
  32. Kim H.J., Jeong M.H., Park H.J., Kim W.C., Kim J.E.: Development of an immunoaffinity chromatography and HPLC-UV method for determination of 16 sulfonamides in feed. Food Chem 2016, 196, 1144–1149, doi: 10.1016/j.foodchem.2015.10.014.
  33. Kugimiya A., Takei H.: Selectivity and recovery performance of phosphate-selective molecularly imprinted polymer. Anal Chim Acta 2008, 606, 252–256, doi: 10.1016/j.aca.2007.11.025.
  34. Littlefield N.A., Sheldon W.G., Allen R., Gaylor D.W.: Chronic toxicity/carcinogenicity studies of sulphamethazine in Fischer 344/N rates: two-generation exposure. Food Chem Toxicol 1990, 28, 157–167, doi: 10.1016/0278-6915(90)90004-7.
  35. Liu J., Jiang M., Li G., Xu L., Xie M.: Miniaturized salting-out liquid-liquid extraction of sulfonamides from different matrices. Anal Chim Acta 2010, 679, 74–80, doi: 10.1016/j.aca.2010.09.013.
  36. Liu Y., Liu X., Wang J.: The adsorption property of nicotine-imprinted polymer. Chin J Anal Chem 2003, 31, 1202–1206, doi: 10.1007/BF02974893.
  37. Lyu W., Xiang Y., Wang X., Li J., Yang C., Yang H., Xiao Y.: Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents. Oxid Med Cell Longev 2022, doi: 10.1155/2022/2315575.
  38. Marczak M., Okoniewska K., Okoniewski J., Grabowski T., Jaroszewski J.J.: Indirect relationship between lipophilicity and maximum residue limit of drugs determined for fatty tissue. Bull Vet Inst Pulawy 2015, 59, 383–391, doi: 10.1515/bvip-2015-0057.
  39. Mengelers M.J., Van Gogh E.R., Kuiper H.A., Pijpers A., Verheijden J.H., Van Miert A.S.: Pharmacokinetics of sulfadimethoxine and sulfamethoxazole in combination with trimethoprim after intravenous administration to healthy and pneumonic pigs. J Vet Pharmacol Ther 1995, 18, 243–253, doi: 10.1111/j.1365-2885.1995.tb00588.x.
  40. Ministry of Agriculture of the People’s Republic of China 2002 Announcement No. 38, http://english.moa.gov.cn/.
  41. Neu H.C.: The crisis in antibiotic resistance. Science 1992, 257, 1064–1073, doi: 10.1126/science 257.5073. 1064.
  42. Nouws J.F.M., Vree T.B., Baakman M., Driessens F., Vellenga L., Mevius D.J.: Pharmacokinetics, renal clearance, tissue distribution, and residue aspects of sulphadimidine and its N4‐ acetyl metabolite in pigs. Vet Q 2011, 8, 123–135, doi: 10.1080/01652176.1986.9694031.
  43. Passantino A., Russo C.: Maximum Residue Levels of Veterinary Medicines in Relation to Food Safety: European Community Legislation and Ethical Aspects. J Verbrauch Lebensm 2008, 3, 351–358, doi: 10.1007/s00003-008-0369-x.
  44. Sun H., Ai L., Wang F.: Quantitative analysis of sulfonamide residues in natural animal casings by HPLC. Chromatographia 2007, 66, 333–337, doi: 10.1365/s10337-007-0329-0.
  45. Van Poucke L.S.G., Van Peteghem C.H.: Pharmacokinetics and Tissue Residues of Sulfathiazole and Sulfamethazine in Pigs. J Food Prot 1994, 796–801, doi: 10.4315/0362-028X-57.9.796.
  46. Wang Y., Li Y., Wu J., Pei Y., Chen X., Sun Y., Hu M., Xing Y., Cao J., Li Z., Fei P., Deng R., Gu S., Hu X.: Development of an immunochromatographic strip test for the rapid detection of soybean Bowman-Birk inhibitor. Food Agric Immunol 2019, 30, 1202–1211, doi: 10.1080/09540105.2019.1680613.
  47. Witt J.: Beitrag Nr 45: Pharmacokinetics of Sulfadiazine in Pigs. Beitr Inst Umweltsystemforsch Univ Osnabrück, Osnabrück, Germany, 2006.
  48. Wu X., Lin Z., Toney E., Clapham M.O., Wetzlich S.E., Davis J.L., Chen Q., Tell L.A.: Pharmacokinetics, tissue residue depletion, and withdrawal interval estimations of florfenicol in goats following repeated subcutaneous administrations. Food Chem Toxicol 2023, 181, doi: 10.1016/j.fct.2023.114098.
Language: English
Page range: 101 - 109
Submitted on: Apr 25, 2024
Accepted on: Jan 21, 2025
Published on: Jan 30, 2025
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Artur Burmańczuk, Monika Osypiuk, Bożena Polska, Dominik Kunicki, Marcin Kocik, Karol Grzęda, Włodzimierz Markiewicz, Oktay Yilmaz, Tomasz Grabowski, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution 4.0 License.