Have a personal or library account? Click to login
Tissue expression of porcine transient receptor potential mucolipin protein channels and their differential responses to porcine reproductive and respiratory syndrome virus infection in vitro
Conzelmann K.K., Visser N., Van Woensel P., Thiel H. J.: Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 1993, 193, 329–339, doi: <a href="https://doi.org/10.1006/viro.1993.1129." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/viro.1993.1129.</a>
Luo Q., Zheng Y., Zhang H., Yang Z., Sha H., Kong W., Zhao M., Wang N.: Research progress on glycoprotein 5 of porcine reproductive and respiratory syndrome virus. Animals 2023, 13, 813–829, doi: <a href="https://doi.org/10.3390/ani13050813." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ani13050813.</a>
Ma J., Ma L., Yang M., Wu W., Feng W., Chen Z.: The function of the PRRSV-host interactions and their effects on viral replication and propagation in antiviral strategies. Vaccines 2021, 9, 364–380, doi: <a href="https://doi.org/10.3390/vaccines9040364." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/vaccines9040364.</a>
Martina J.A., Lelouvier B., Puertollano R.: The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 2009, 10, 1143–1156, doi: <a href="https://doi.org/10.1111/j.1600-0854.2009.00935." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1600-0854.2009.00935.</a>
Neumann E.J., Kliebenstein J.B., Johnson C.D., Mabry J.W., Bush E.J., Seitzinger A.H., Green A.L., Zimmerman J.J.: Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 2005, 227, 385–392, doi: <a href="https://doi.org/10.2460/javma.2005.227.385." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2460/javma.2005.227.385.</a>
Plesch E., Chen C.-C.; Butz E., Scotto Rosato A., Krogsaeter E.K., Yinan H., Bartel K., Keller M., Robaa D., Teupser D., Holdt L.M., Vollmar A.M., Sippl W., Puertollano R., Medina D., Biel M., Wahl-Schott C., Bracher F., Grimm C.: Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. eLife 2018, 7, e39720, doi: <a href="https://doi.org/10.7554/eLife.39720." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7554/eLife.39720.</a>
Sun L., Hua Y., Vergarajauregui S., Diab H.I., Puertollano R.: Novel role of TRPML2 in the regulation of the innate immune response. J Immunol 2015, 195, 4922–4932, doi: <a href="https://doi.org/10.4049/jimmunol.1500163." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4049/jimmunol.1500163.</a>
Venkatachalam K., Wong C.-O., Zhu M.X.: The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 2015, 58, 48–56, doi: <a href="https://doi.org/10.1016/j.ceca.2014.10.008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ceca.2014.10.008.</a>
Wang Y., Yim-Im W., Porter E., Lu N., Anderson J., Noll L., Fang Y., Zhang J., Bai J.: Development of a bead-based assay for detection and differentiation of field strains and four vaccine strains of type 2 porcine reproductive and respiratory syndrome virus (PRRSV-2) in the USA. Transbound Emerg Dis 2021, 68, 1414–1423, doi: <a href="https://doi.org/10.1111/tbed.13808." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/tbed.13808.</a>
Xia Z., Wang L., Li S., Tang W., Sun F., Wu Y., Miao L., Cao Z.: ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antiviral Res 2020, 182, 104922, doi: <a href="https://doi.org/10.1016/j.antiviral.2020.104922." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.antiviral.2020.104922.</a>
Xia Z., Xie L., Li D., Hong X., Qin C.: Gene expression of TRPMLs and its regulation by pathogen stimulation. Gene 2023, 864, 147291, doi: <a href="https://doi.org/10.1016/j.gene.2023.147291." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.gene.2023.147291.</a>
Zhang M., Ma Y., Ye X., Zhang N., Pan L., Wang B.: TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023, 8, 261–299, doi: <a href="https://doi.org/10.1038/s41392-023-01464-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41392-023-01464-x.</a>
Zhou N., Pan T., Zhang J., Li Q., Zhang X., Bai C., Huang F., Peng T., Zhang J., Liu C., Tao L., Zhang H.: Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem 2016, 291, 9218–9132, doi: <a href="https://doi.org/10.1074/jbc.M116.716100." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1074/jbc.M116.716100.</a>