Have a personal or library account? Click to login
Tissue expression of porcine transient receptor potential mucolipin protein channels and their differential responses to porcine reproductive and respiratory syndrome virus infection in vitro Cover

Tissue expression of porcine transient receptor potential mucolipin protein channels and their differential responses to porcine reproductive and respiratory syndrome virus infection in vitro

Open Access
|Mar 2024

References

  1. Boulant S., Stanifer M., Lozach P. Y.: Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses 2015, 7, 2794–2815, doi: <a href="https://doi.org/10.3390/v7062747." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/v7062747.</a>
  2. Conzelmann K.K., Visser N., Van Woensel P., Thiel H. J.: Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 1993, 193, 329–339, doi: <a href="https://doi.org/10.1006/viro.1993.1129." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/viro.1993.1129.</a>
  3. Doyle T., Moncorge O., Bonaventure B., Pollpeter D., Lussignol M., Tauziet M., Apolonia L., Catanese M.T., Goujon C., Malim M.H.: The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry. Nat Microbiol 2018, 3, 1369–1376, doi: <a href="https://doi.org/10.1038/s41564-018-0273-9." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41564-018-0273-9.</a>
  4. Kuypers J., Wright N., Ferrenberg J., Huang M.-L., Cent A., Corey L., Morrow R.: Comparison of real-time PCR assays with fluorescent-antibody assays for diagnosis of respiratory virus infections in children. J Clin Microbiol 2006, 44, 2382–2388, doi: <a href="https://doi.org/10.1128/JCM.00216-06." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/JCM.00216-06.</a>
  5. Lunney J.K., Fang Y., Ladinig A., Chen N., Li Y., Rowland B., Renukaradhya G.J.: Porcine reproductive and respiratory syndrome virus (PRRSV): Pathogenesis and interaction with the immune system. Annu Rev Anim Biosci 2016, 4, 129–154, doi: <a href="https://doi.org/10.1146/annurev-animal-022114-111025." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1146/annurev-animal-022114-111025.</a>
  6. Luo Q., Zheng Y., Zhang H., Yang Z., Sha H., Kong W., Zhao M., Wang N.: Research progress on glycoprotein 5 of porcine reproductive and respiratory syndrome virus. Animals 2023, 13, 813–829, doi: <a href="https://doi.org/10.3390/ani13050813." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ani13050813.</a>
  7. Ma J., Ma L., Yang M., Wu W., Feng W., Chen Z.: The function of the PRRSV-host interactions and their effects on viral replication and propagation in antiviral strategies. Vaccines 2021, 9, 364–380, doi: <a href="https://doi.org/10.3390/vaccines9040364." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/vaccines9040364.</a>
  8. Martina J.A., Lelouvier B., Puertollano R.: The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 2009, 10, 1143–1156, doi: <a href="https://doi.org/10.1111/j.1600-0854.2009.00935." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1600-0854.2009.00935.</a>
  9. Murtaugh M.P., Stadejek T., Abrahante J.E., Lam T.T., Leung F.C.: The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res 2010, 154, 18–30, doi: <a href="https://doi.org/10.1016/j.virusres.2010.08.015." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.virusres.2010.08.015.</a>
  10. Neumann E.J., Kliebenstein J.B., Johnson C.D., Mabry J.W., Bush E.J., Seitzinger A.H., Green A.L., Zimmerman J.J.: Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 2005, 227, 385–392, doi: <a href="https://doi.org/10.2460/javma.2005.227.385." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2460/javma.2005.227.385.</a>
  11. Plesch E., Chen C.-C.; Butz E., Scotto Rosato A., Krogsaeter E.K., Yinan H., Bartel K., Keller M., Robaa D., Teupser D., Holdt L.M., Vollmar A.M., Sippl W., Puertollano R., Medina D., Biel M., Wahl-Schott C., Bracher F., Grimm C.: Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. eLife 2018, 7, e39720, doi: <a href="https://doi.org/10.7554/eLife.39720." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7554/eLife.39720.</a>
  12. Pollmanns M.R., Beer J., Rosignol I., Rodriguez-Muela N., Falkenburger B.H., Dinter E.: Activated endolysosomal cation channel TRPML1 facilitates maturation of alpha-synuclein-containing autophagosomes. Front Cell Neurosci 2022, 16, 861202, doi: <a href="https://doi.org/10.3389/fncel.2022.861202." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fncel.2022.861202.</a>
  13. Rinkenberger N., Schoggins J.W.: Mucolipin-2 cation channel increases trafficking efficiency of endocytosed viruses. mBio 2018, 9, e02314–02317, doi: <a href="https://doi.org/10.1128/mBio.02314-17." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/mBio.02314-17.</a>
  14. Romeo C., Parisio G., Scali F., Tonni M., Santucci G., Maisano A.M., Barbieri I., Boniotti M.B., Stadejek T., Alborali G.L.: Complex interplay between PRRSV-1 genetic diversity, coinfections and antimicrobial use influences performance parameters in post-weaning pigs. Vet Microbiol 2023, 284, 109830, doi: <a href="https://doi.org/10.1016/j.vetmic.2023.109830." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetmic.2023.109830.</a>
  15. Santoni G., Morelli M.B., Amantini C., Nabissi M., Santoni M., Santoni A.: Involvement of the TRPML mucolipin channels in viral infections and anti-viral innate immune responses. Front Immunol 2020, 11, 739–747, doi: <a href="https://doi.org/10.3389/fimmu.2020.00739." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fimmu.2020.00739.</a>
  16. Shao C., Yu Z., Luo T., Zhou B., Song Q., Li Z., Yu X., Jiang S., Zhou Y., Dong W., Zhou X., Wang X., Song H.-H.: Chitosan-Coated Selenium Nanoparticles Attenuate PRRSV Replication and ROS/JNK-Mediated Apoptosis in vitro. Int J Nanomed 2022, 17, 3043–3054, doi: <a href="https://doi.org/10.2147/IJN.S370585." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2147/IJN.S370585.</a>
  17. Shen D., Wang X., Li X., Zhang X., Yao Z., Dibble S., Dong X.-P., Yu T., Lieberman A.P., Showalter H.D., Xu H.-X.: Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 2012, 3, 731, doi: <a href="https://doi.org/10.1038/ncomms1735." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/ncomms1735.</a>
  18. Song S., Xu H., Zhao J., Leng C., Xiang L., Li C., Fu J., Tang Y.-D., Peng J., Wang Q., An T., Cai X., Zhang H., Tian Z.-J.: Pathogenicity of NADC34-like PRRSV HLJDZD32-1901 isolated in China. Vet Microbiol 2020, 246, 108727, doi: <a href="https://doi.org/10.1016/j.vetmic.2020.108727." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetmic.2020.108727.</a>
  19. Sun L., Hua Y., Vergarajauregui S., Diab H.I., Puertollano R.: Novel role of TRPML2 in the regulation of the innate immune response. J Immunol 2015, 195, 4922–4932, doi: <a href="https://doi.org/10.4049/jimmunol.1500163." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4049/jimmunol.1500163.</a>
  20. Sun Q., Xu H., An T., Cai X., Tian Z., Zhang H.: Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023, 15, 1528, doi: <a href="https://doi.org/10.3390/v15071528." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/v15071528.</a>
  21. Venkatachalam K., Wong C.-O., Zhu M.X.: The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 2015, 58, 48–56, doi: <a href="https://doi.org/10.1016/j.ceca.2014.10.008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ceca.2014.10.008.</a>
  22. Wang Y., Yim-Im W., Porter E., Lu N., Anderson J., Noll L., Fang Y., Zhang J., Bai J.: Development of a bead-based assay for detection and differentiation of field strains and four vaccine strains of type 2 porcine reproductive and respiratory syndrome virus (PRRSV-2) in the USA. Transbound Emerg Dis 2021, 68, 1414–1423, doi: <a href="https://doi.org/10.1111/tbed.13808." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/tbed.13808.</a>
  23. Xia Z., Ren Y., Li S., Xu J., Wu Y., Cao Z.: ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antiviral Res 2021, 195, 105193, doi: <a href="https://doi.org/10.1016/j.antiviral.2021.105193." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.antiviral.2021.105193.</a>
  24. Xia Z., Wang L., Li S., Tang W., Sun F., Wu Y., Miao L., Cao Z.: ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antiviral Res 2020, 182, 104922, doi: <a href="https://doi.org/10.1016/j.antiviral.2020.104922." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.antiviral.2020.104922.</a>
  25. Xia Z., Xie L., Li D., Hong X., Qin C.: Gene expression of TRPMLs and its regulation by pathogen stimulation. Gene 2023, 864, 147291, doi: <a href="https://doi.org/10.1016/j.gene.2023.147291." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.gene.2023.147291.</a>
  26. Yan H., Zhang J., Ma D., Yin J.: qPCR and loop mediated isothermal amplification for rapid detection of Ustilago tritici. PeerJ 2019, 7, e7766, doi: <a href="https://doi.org/10.7717/peerj.7766." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7717/peerj.7766.</a>
  27. Yu P.-W., Fu P.-F., Zeng L., Qi Y.-L., Li X.-Q., Wang Q., Yang G.-Y., Li H.-W., Wang J., Chu B.-B., Wang M.-D.: EGCG restricts PRRSV proliferation by disturbing lipid metabolism. Microbiol Spectr 2022, 10, e0227621, doi: <a href="https://doi.org/10.1128/spectrum.02276-21." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/spectrum.02276-21.</a>
  28. Zhang L., Liu X., Mao J., Sun Y., Gao Y., Bai J., Jiang P.: Porcine reproductive and respiratory syndrome virus-mediated lactate facilitates virus replication by targeting MAVS. Vet Microbiol 2023, 284, 109846, doi: <a href="https://doi.org/10.1016/j.vetmic.2023.109846." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetmic.2023.109846.</a>
  29. Zhang M., Ma Y., Ye X., Zhang N., Pan L., Wang B.: TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023, 8, 261–299, doi: <a href="https://doi.org/10.1038/s41392-023-01464-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41392-023-01464-x.</a>
  30. Zhao J., Zhu L., Huang J., Yang Z., Xu L., Gu S., Huang Y., Zhang R., Sun X., Zhou Y., Wu Z.: Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet Med Sci 2021, 7, 697–704, doi: <a href="https://doi.org/10.1002/vms3.402." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/vms3.402.</a>
  31. Zhou N., Pan T., Zhang J., Li Q., Zhang X., Bai C., Huang F., Peng T., Zhang J., Liu C., Tao L., Zhang H.: Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem 2016, 291, 9218–9132, doi: <a href="https://doi.org/10.1074/jbc.M116.716100." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1074/jbc.M116.716100.</a>
Language: English
Page range: 45 - 53
Submitted on: Sep 15, 2023
Accepted on: Mar 6, 2024
Published on: Mar 23, 2024
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Zhiqiang Xia, Denggao Long, Xinyi Hong, Ying Lan, Lixia Xie, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.