Have a personal or library account? Click to login
Droplet digital PCR quantification of selected microRNAs in raw mastitic cow’s milk from the west of Poland Cover

Droplet digital PCR quantification of selected microRNAs in raw mastitic cow’s milk from the west of Poland

Open Access
|Dec 2023

References

  1. Adkins P.R.F., Middleton J.R.: Methods for diagnosing mastitis. Vet Clin North America Food Anim Pract 2018, 34, 479–491.
  2. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F.: Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci Rep 2016, 6, 20680–20686, doi: 10.1038/srep20680.
  3. Benjamini Y., Hochberg Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Society 1995, 57, 289–300.
  4. Blowey R., Edmondson P.: Mastitis control in dairy herds. CABI. Book 2010.
  5. Chakraborty S., Dhama K., Tiwari R., Iqbal Y.M., Khurana S.K., Khandia R., Munjal A., Munuswamy P., Kumar M.A., Singh M., Singh R., Gupta V.K., Chaicumpa W.: Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population-a review. Vet Q 2019, 39, 76–94, doi: 10.1080/01652176.2019.1642546.
  6. Chen L., Liu X., Li Z., Wang, H., Liu Y., He H., Yang J., Niu F., Wang L., Guo J.: Expression differences of miRNAs and genes on NF-kappaB pathway between the healthy and the mastitis Chinese Holstein cows. Gene 2014, 545, 117–125, doi: 10.1016/j.gene.2014.04.071.
  7. Dalen G.: The detection of intramammary infections using online somatic cell counts. J Dairy Sci 2019, 102, 5419–5429, doi: 10.3168/jds.2018-15295.
  8. Das K., Rao L.: The Role of microRNAs in Inflammation. Int J Mol Sci 2022, 23, 15479–15484, doi: 10.3390/ijms232415479.
  9. Dingwell R.T., Leslie K.E., Schukken Y.H., Sargeant J.M., Timms L.L.: Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. Can Vet J 2003, 44, 413–415.
  10. Dong H., Gao Q., Peng X., Sun Y., Han T., Zhao B.: Circulating MicroRNAs as potential biomarkers for veterinary infectious diseases. Front Vet Sci 2017, 4, 1–7, doi: 10.3389/fvets.2017. 00186.
  11. Ebrahimie E., Ebrahimi F., Ebrahimi M., Tomlinson S., Petrovski K.: A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: Highlighting the predictive power of lactose and electrical conductivity. J Dairy Res 2018, 85, 193–200, doi: 10.1017/S0022029918000249.
  12. Fernandes L., Guimaraes I., Noyes N.R., Caixeta L.S., Machado V.S.: Effect of subclinical mastitis detected in the first month of lactation on somatic cell count linear scores, milk yield, fertility, and culling of dairy cows in certified organic herds. J Dairy Sci 2021, 2, 2140–2150, doi: 10.3168/jds.2020-19153.
  13. Halasa T., Huijps K., Østerås O., Hogeveen H.: Economic effects of bovine mastitis and mastitis management: A review. Vet Quarterly 2007, 29, 18–31, doi: 10.1080/01652176.2007.9695224.
  14. Johnnidis J.B., Harris M.H., Wheeler R.T., Stehling-Sun S., Lam M.H., Kirak O., Brummelkamp T.R., Fleming M.D., Camargo F.D.: Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008, 451, 1125–1129, doi: 10.1038/NATURE06607.
  15. Kaczorek-Łukowska E., Małaczewska J., Wójcik R.: Streptococci as the new dominant aetiological factors of mastitis in dairy cows in north-eastern Poland: analysis of the results obtained in 2013–2019. Ir Vet J 2021, 74, 2, doi: 10.1186/s13620-020-00181-z.
  16. Kuhn M.: Caret: Classification and Regression Training. R package version 6.0-93, https://CRAN.R-project.org/package=caret, 2022.
  17. Lai Y.C., Fujikawa T., Ando T., Kitahara G., Koiwa M., Kubota C., Miura N.: Rapid Communication: MiR-92a as a housekeeping gene for analysis of bovine mastitis-related microRNA in milk. J Anim Sci 2017, 95, 2732–2735, doi: 10.2527/jas.2017.1384.
  18. Lai Y.C., Fujikawa T., Maemura T., Ando T., Kitahara G., Endo Y., Yamato O., Koiwa M., Kubota Ch., Miura N.: Inflammation-related microRNA expression level in the bovine milk is affected by mastitis. PLoS One 2017, 12, e0177182, doi: 10.1371/journal.pone.0177182.
  19. Lai Y.C., Lai Y.T., Rahman M.M., Chen H.W., Husna A.A., Kubota Ch., Miura N.: Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis. FEBS J 2020, 287, 1899–1918, doi: 10.1111/febs.15114.
  20. Li. R., Zhang Ch.L., Liao X.X., Chen D., Wang W., Zhu Y., Geng X., Ji D., Mao Y., Gong Y., Yang Z.-P.: Transcriptome MicroRNA Profiling of Bovine Mammary Glands Infected with Staphylococcus aureus. Int J Mol Sci 2015, 16, 4997–5013, doi: 10.3390/ijms16034997.
  21. Moyes K.M., Sorensen P., Bionaz M.: The impact of intramammary Escherichia coli challenge on liver and mammary transcriptome and cross-talk in dairy cows during early lactation using RNAseq. PLoS One 2016, 11, e0157480, doi: 10.1371/journal.pone.0157480.
  22. Naeem K., Zhong S.J., Moisá J.K., Drackley K.M., Moyes J.J.: Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci 2012, 95, 6397-6408, doi: 10.3168/jds.2011-5173.
  23. National Mastitis Council: Laboratory Handbook on Bovine Mastitis, National Mastitis Council, New Prague, MN, 2017.
  24. Oyelami F.O., Usman T., Suravajhala P., Ali N., Do D.N.: Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022, 11, 1009, doi: 10.3390/pathogens11091009.
  25. Precazzini F., Detassis S., Imperatori A.S., Denti M.A., Campomenosi P.: Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int J Mol Sci 2021, 22, 1176, doi: 10.3390/ijms22031176.
  26. Qi M., Geng H., Geng N., Cui Y., Qi C., Cheng G., Song K., Hu L., Liu Y., Lui J., Han B.: Streptococcus agalactiae-induced autophagy of bovine mammary epithelial cell via PI3K/AKT/mTOR pathway. J Dairy Res 2022, 7, 1–7, doi: 10.1017/S0022029922000243.
  27. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing 2022, Vienna, Austria. https://www.R-project.org/.
  28. Romero J., Benavides E., Meza C.: Assessing Financial Impacts of Subclinical Mastitis on Colombian Dairy Farms. Front Vet Sci 2018, 5, 273, doi: 10.3389/fvets.2018.00273.
  29. Schepers A.J., Lam T.J., Schukken Y.H., Wilmink J.B., Hanekamp W.J.: Estimation of variance components for somatic cell counts to determine thresholds for uninfected quarters. J Dairy Sci 1997, 80, 1833–1840, doi: 10.3168/jds.S0022-0302(97)76118-6.
  30. Seegers H., Fourichon C., Beaudeau F.: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 2003, 34, 475–491, doi: 10.1051/vetres:2003027.
  31. Sharma N., Singh N., Bhadwal M.: Relationship of Somatic Cell Count and Mastitis: An Overview. Anim Biosci 2011, 24, 429–438, doi: 10.5713/ajas.2011.10233.
  32. Smulski S., Gehrke M., Libera K., Cieślak A., Huang H., Patra K.A., Szumacher-Strabel M.: Effects of various mastitis treatments on the reproductive performance of cows. BMC Vet Res 2020, 16, 99, doi: 10.1186/s12917-020-02305-7.
  33. Sohel M.M.H.: Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci 2020, 248, 117473, doi: 10.1016/j.lfs.2020.117473.
  34. Srikok S., Patchanee P., Boonyayatra S., Chuammitri P.: Potential role of MicroRNA as a diagnostic tool in the detection of bovine mastitis. Prevent Vet Med 2020, 182, 105101, doi: 10.1016/j.prevetmed.2020.105101.
  35. Taganov K.D., Boldin M.P., Chang K.J., Baltimore D.: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 2006, 103, 12481–12486, doi: 10.1073/pnas.0605298103.
  36. Tam W., Dahlberg J.E.: miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 2006, 45, 211–212, doi: 10.1038/s41388-018-0571-y.
  37. Tzelos T., Ho W., Charmana V.I.: MiRNAs in milk can be used towards early prediction of mammary gland inflammation in cattle. Sci Rep 2022, 12, 5131, doi: 10.1038/s41598-022-09214-9.
  38. Wall S.K., Wellnitz O., Bruckmaier R.M., Schwarz D.: Differential somatic cell count in milk before, during, and after lipopolysaccharide- and lipoteichoic-acid-induced mastitis in dairy cows. J Dairy Sci 2018, 101, 5362–5373, doi: 10.3168/jds.2017-14152.
  39. Wellnitz O., Bruckmaier R.M.: The innate immune response of the bovine mammary gland to bacterial infection. Vet J 2012, 192, 148–152, doi: 10.1016/j.jinf.2006.06.010.
Language: English
Page range: 583 - 591
Submitted on: Jun 15, 2023
Accepted on: Oct 27, 2023
Published on: Dec 19, 2023
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Sebastian Smulski, Marcin Pszczoła, Monika Stachowiak, Adrianna Bilińska, Izabela Szczerbal, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.