References
- Azam M.S., Vanderpool C.K.: Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol 2020, 114, 391–408, doi: 10.1111/mmi.14514.
- Berdejo D., Pagán E., Merino N., García-Gonzalo D., Pagán R.: Emerging mutant populations of Listeria monocytogenes EGD-e under selective pressure of Thymbra capitata essential oil question its use in food preservation. Food Res Int 2021, 145, 110403, doi: 10.1016/j.foodres.2021.110403.
- Bouvier M., Sharma C.M., Mika F., Nierhaus K.H., Vogel J.: Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 2008, 32, 827–837, doi: 10.1016/j.molcel.2008.10.027
- Burke T.P., Loukitcheva A., Zemansky J., Wheeler R., Boneca I.G., Portnoy D.A.: Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. J Bacteriol 2014, 196, 3756–3767, doi: 10.1128/JB.02053-14.
- Cerutti F., Mallet L., Painset A., Hoede C., Moisan A., Bécavin C., Duval M., Dussurget O., Cossart P., Gaspin C., Chiapello H.: Unraveling the evolution and coevolution of small regulatory RNAs and coding genes in Listeria. BMC Genomics 2017, 18, 882, doi: 10.1186/s12864-017-4242-0.
- Dbeibo L., van Rensburg J.J., Smith S.N., Fortney K.R., Gangaiah D., Gao H., Marzoa J., Liu Y., Mobley H.L.T., Spinola S.M.: Evaluation of CpxRA as a Therapeutic Target for Uropathogenic Escherichia coli Infections. Infect Immun 2018, 86, e00798–17, doi: 10.1128/IAI.00798-17.
- Dos Santos P.T., Menendez-Gil P., Sabharwal D., Christensen J.H., Brunhede M.Z., Lillebæk E.M.S., Kallipolitis B.H.: The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018, 9, 599, doi: 10.3389/fmicb.2018.00599.
- Frantz R., Teubner L., Schultze T., La Pietra L., Müller C., Gwozdzinski K., Pillich H., Hain T., Weber-Gerlach M., Panagiotidis G.D., Mostafa A., Weber F., Rohde M., Pleschka S., Chakraborty T., Abu Mraheil M.: The secRNome of Listeria monocytogenes Harbors Small Noncoding RNAs That Are Potent Inducers of Beta Interferon. mBio 2019, 10, e01223–19, doi: 10.1128/mBio.01223-19.
- Ignatov D., Vaitkevicius K., Durand S., Cahoon L., Sandberg S.S., Liu X., Kallipolitis B.H., Rydén P., Freitag N., Condon C., Johansson J.: An mRNA-mRNA Interaction Couples Expression of a Virulence Factor and Its Chaperone in Listeria monocytogenes. Cell Rep 2020, 30, 4027–4040, doi: 10.1016/j.celrep.2020.03.006.
- Jiang X., Ren S., Geng Y., Jiang C., Liu G., Wang H., Yu T., Liang Y.: Role of the VirSR-VirAB system in biofilm formation of Listeria monocytogenes EGD-e. Food Res Int 2021, 145, 110394, doi: 10.1016/j.foodres.2021.110394.
- Knudsen G.M., Olsen J.E., Dons L.: Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol Lett 2004, 240, 171–179, doi: 10.1016/j.femsle.2004.09.039.
- Lebreton A., Cossart P.: RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression. RNA Biol 2017, 14, 460–470, doi: 10.1080/15476286.2016.1189069.
- Liu Y., Sun W., Sun T., Gorris L.G.M., Wang X., Liu B., Dong Q.: The prevalence of Listeria monocytogenes in meat products in China: A systematic literature review and novel meta-analysis approach. Int J Food Microbiol 2020, 312, 108358, doi: 10.1016/j.ijfoodmicro.2019.108358.
- Marinho C.M., Dos Santos P.T., Kallipolitis B.H., Johansson J., Ignatov D., Guerreiro D.N., Piveteau P., O’Byrne C.P.: The σB-dependent regulatory sRNA Rli47 represses isoleucine biosynthesis in Listeria monocytogenes through a direct interaction with the ilvA transcript. RNA Biol 2019, 16, 1424–1437, doi: 10.1080/15476286.2019.1632776.
- Mujahid S., Bergholz T.M., Oliver H.F., Boor K.J., Wiedmann M.: Exploration of the role of the non-coding RNA SbrE in L. monocytogenes stress response. Int J Mol Sci 2012, 14, 378–393, doi: 10.3390/ijms14010378.
- Müller P., Gimpel M., Wildenhain T., Brantl S.: A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in Bacillus subtilis. RNA Biol 2019, 16, 972–987, doi: 10.1080/15476286.2019.1605811.
- Overlöper A., Kraus A., Gurski R., Wright P.R., Georg J., Hess W.R., Narberhaus F.: Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region. RNA Biol 2014, 11, 624–640, doi: 10.4161/rna.29145.
- Peng Y.L., Meng Q.L., Qiao J., Xie K., Chen C., Liu T.L., Hu Z.X., Ma Y., Cai X.P., Chen C.F.: The Regulatory Roles of ncRNA Rli60 in Adaptability of Listeria monocytogenes to Environmental Stress and Biofilm Formation. Curr Microbiol 2016, 73, 77–83, doi: 10.1007/s00284-016-1028-6.
- Pombinho R., Vieira A., Camejo A., Archambaud C., Cossart P., Sousa S., Cabanes D.: Virulence gene repression promotes Listeria monocytogenes systemic infection. Gut Microbes 2020, 11, 868–881, doi: 10.1080/19490976.2020.1712983.
- Quereda, J.J., Ortega A.D., Pucciarelli M.G., García-Del Portillo F.: The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5′-UTR Variant. PLoS Genet 2014, 10, e1004765, doi: 10.1371/journal.pgen.1004765.
- Radoshevich L., Cossart P.: Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018, 16, 32–46, doi: 10.1038/nrmicro.2017.126.
- Roberts B.N., Chakravarty D., Gardner J.C. 3rd, Ricke S.C., Donaldson J.R.: Listeria monocytogenes Response to Anaerobic Environments. Pathogens 2020, 9, 210, doi: 10.3390/pathogens9030210.
- Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9, 671–675, doi: 10.1038/nmeth.2089.
- Tamburro M., Sammarco M.L., Fanelli I., Ripabelli G.: Characterization of Listeria monocytogenes serovar 1/2a, 1/2b, 1/2c and 4b by high resolution melting analysis for epidemiological investigations. Int J Food Microbiol 2019, 310, 108289, doi: 10.1016/j.ijfoodmicro.2019.108289.
- Taneja S., Dutta T.: On a stake-out: Mycobacterial small RNA identification and regulation. Noncoding RNA Res 2019, 4, 86–95, doi: 10.1016/j.ncrna.2019.05.001.
- Wurtzel O., Sesto N., Mellin J.R., Karunker I., Edelheit S., Bécavin C., Archambaud C., Cossart P., Sorek R.: Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 2012, 8, 583, doi: 10.1038/msb.2012.11.
- Yi Z., Wang D., Xin S., Zhou D., Li T., Tian M., Qi J., Ding C., Wang S., Yu S.: The CpxR regulates type VI secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli. Vet Res 2019, 50, 40, doi: 10.1186/s13567-019-0658-7.
- Zetzmann M., Bucur F.I., Crauwels P., Borda D., Nicolau A.I., Grigore-Gurgu L., Seibold G.M., Riedel C.U.: Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. Microbiologyopen 2019, 8, e00826, doi: 10.1002/mbo3.826.