Have a personal or library account? Click to login
The small non-coding RNA rli106 contributes to the environmental adaptation and pathogenicity of Listeria monocytogenes Cover

The small non-coding RNA rli106 contributes to the environmental adaptation and pathogenicity of Listeria monocytogenes

Open Access
|Mar 2023

References

  1. Azam M.S., Vanderpool C.K.: Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol 2020, 114, 391–408, doi: 10.1111/mmi.14514.
  2. Berdejo D., Pagán E., Merino N., García-Gonzalo D., Pagán R.: Emerging mutant populations of Listeria monocytogenes EGD-e under selective pressure of Thymbra capitata essential oil question its use in food preservation. Food Res Int 2021, 145, 110403, doi: 10.1016/j.foodres.2021.110403.
  3. Bouvier M., Sharma C.M., Mika F., Nierhaus K.H., Vogel J.: Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 2008, 32, 827–837, doi: 10.1016/j.molcel.2008.10.027
  4. Burke T.P., Loukitcheva A., Zemansky J., Wheeler R., Boneca I.G., Portnoy D.A.: Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. J Bacteriol 2014, 196, 3756–3767, doi: 10.1128/JB.02053-14.
  5. Cerutti F., Mallet L., Painset A., Hoede C., Moisan A., Bécavin C., Duval M., Dussurget O., Cossart P., Gaspin C., Chiapello H.: Unraveling the evolution and coevolution of small regulatory RNAs and coding genes in Listeria. BMC Genomics 2017, 18, 882, doi: 10.1186/s12864-017-4242-0.
  6. Dbeibo L., van Rensburg J.J., Smith S.N., Fortney K.R., Gangaiah D., Gao H., Marzoa J., Liu Y., Mobley H.L.T., Spinola S.M.: Evaluation of CpxRA as a Therapeutic Target for Uropathogenic Escherichia coli Infections. Infect Immun 2018, 86, e00798–17, doi: 10.1128/IAI.00798-17.
  7. Dos Santos P.T., Menendez-Gil P., Sabharwal D., Christensen J.H., Brunhede M.Z., Lillebæk E.M.S., Kallipolitis B.H.: The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018, 9, 599, doi: 10.3389/fmicb.2018.00599.
  8. Frantz R., Teubner L., Schultze T., La Pietra L., Müller C., Gwozdzinski K., Pillich H., Hain T., Weber-Gerlach M., Panagiotidis G.D., Mostafa A., Weber F., Rohde M., Pleschka S., Chakraborty T., Abu Mraheil M.: The secRNome of Listeria monocytogenes Harbors Small Noncoding RNAs That Are Potent Inducers of Beta Interferon. mBio 2019, 10, e01223–19, doi: 10.1128/mBio.01223-19.
  9. Ignatov D., Vaitkevicius K., Durand S., Cahoon L., Sandberg S.S., Liu X., Kallipolitis B.H., Rydén P., Freitag N., Condon C., Johansson J.: An mRNA-mRNA Interaction Couples Expression of a Virulence Factor and Its Chaperone in Listeria monocytogenes. Cell Rep 2020, 30, 4027–4040, doi: 10.1016/j.celrep.2020.03.006.
  10. Jiang X., Ren S., Geng Y., Jiang C., Liu G., Wang H., Yu T., Liang Y.: Role of the VirSR-VirAB system in biofilm formation of Listeria monocytogenes EGD-e. Food Res Int 2021, 145, 110394, doi: 10.1016/j.foodres.2021.110394.
  11. Knudsen G.M., Olsen J.E., Dons L.: Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol Lett 2004, 240, 171–179, doi: 10.1016/j.femsle.2004.09.039.
  12. Lebreton A., Cossart P.: RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression. RNA Biol 2017, 14, 460–470, doi: 10.1080/15476286.2016.1189069.
  13. Liu Y., Sun W., Sun T., Gorris L.G.M., Wang X., Liu B., Dong Q.: The prevalence of Listeria monocytogenes in meat products in China: A systematic literature review and novel meta-analysis approach. Int J Food Microbiol 2020, 312, 108358, doi: 10.1016/j.ijfoodmicro.2019.108358.
  14. Marinho C.M., Dos Santos P.T., Kallipolitis B.H., Johansson J., Ignatov D., Guerreiro D.N., Piveteau P., O’Byrne C.P.: The σB-dependent regulatory sRNA Rli47 represses isoleucine biosynthesis in Listeria monocytogenes through a direct interaction with the ilvA transcript. RNA Biol 2019, 16, 1424–1437, doi: 10.1080/15476286.2019.1632776.
  15. Mujahid S., Bergholz T.M., Oliver H.F., Boor K.J., Wiedmann M.: Exploration of the role of the non-coding RNA SbrE in L. monocytogenes stress response. Int J Mol Sci 2012, 14, 378–393, doi: 10.3390/ijms14010378.
  16. Müller P., Gimpel M., Wildenhain T., Brantl S.: A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in Bacillus subtilis. RNA Biol 2019, 16, 972–987, doi: 10.1080/15476286.2019.1605811.
  17. Overlöper A., Kraus A., Gurski R., Wright P.R., Georg J., Hess W.R., Narberhaus F.: Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region. RNA Biol 2014, 11, 624–640, doi: 10.4161/rna.29145.
  18. Peng Y.L., Meng Q.L., Qiao J., Xie K., Chen C., Liu T.L., Hu Z.X., Ma Y., Cai X.P., Chen C.F.: The Regulatory Roles of ncRNA Rli60 in Adaptability of Listeria monocytogenes to Environmental Stress and Biofilm Formation. Curr Microbiol 2016, 73, 77–83, doi: 10.1007/s00284-016-1028-6.
  19. Pombinho R., Vieira A., Camejo A., Archambaud C., Cossart P., Sousa S., Cabanes D.: Virulence gene repression promotes Listeria monocytogenes systemic infection. Gut Microbes 2020, 11, 868–881, doi: 10.1080/19490976.2020.1712983.
  20. Quereda, J.J., Ortega A.D., Pucciarelli M.G., García-Del Portillo F.: The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5′-UTR Variant. PLoS Genet 2014, 10, e1004765, doi: 10.1371/journal.pgen.1004765.
  21. Radoshevich L., Cossart P.: Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018, 16, 32–46, doi: 10.1038/nrmicro.2017.126.
  22. Roberts B.N., Chakravarty D., Gardner J.C. 3rd, Ricke S.C., Donaldson J.R.: Listeria monocytogenes Response to Anaerobic Environments. Pathogens 2020, 9, 210, doi: 10.3390/pathogens9030210.
  23. Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9, 671–675, doi: 10.1038/nmeth.2089.
  24. Tamburro M., Sammarco M.L., Fanelli I., Ripabelli G.: Characterization of Listeria monocytogenes serovar 1/2a, 1/2b, 1/2c and 4b by high resolution melting analysis for epidemiological investigations. Int J Food Microbiol 2019, 310, 108289, doi: 10.1016/j.ijfoodmicro.2019.108289.
  25. Taneja S., Dutta T.: On a stake-out: Mycobacterial small RNA identification and regulation. Noncoding RNA Res 2019, 4, 86–95, doi: 10.1016/j.ncrna.2019.05.001.
  26. Wurtzel O., Sesto N., Mellin J.R., Karunker I., Edelheit S., Bécavin C., Archambaud C., Cossart P., Sorek R.: Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 2012, 8, 583, doi: 10.1038/msb.2012.11.
  27. Yi Z., Wang D., Xin S., Zhou D., Li T., Tian M., Qi J., Ding C., Wang S., Yu S.: The CpxR regulates type VI secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli. Vet Res 2019, 50, 40, doi: 10.1186/s13567-019-0658-7.
  28. Zetzmann M., Bucur F.I., Crauwels P., Borda D., Nicolau A.I., Grigore-Gurgu L., Seibold G.M., Riedel C.U.: Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. Microbiologyopen 2019, 8, e00826, doi: 10.1002/mbo3.826.
Language: English
Page range: 67 - 77
Submitted on: Apr 1, 2022
Accepted on: Mar 3, 2023
Published on: Mar 17, 2023
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Yun Guo, Chunhui Ji, Lixia Wang, Chengcheng Ning, Na Li, Zhiyuan Li, Yunxia Shang, Yaling Li, Yaoqiang Sun, Xiaoxing Huang, Jie Li, Xuepeng Cai, Qingling Meng, Jun Qiao, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.