Have a personal or library account? Click to login
Analysis of antimicrobial resistance and genetic correlations of Escherichia coli in dairy cow mastitis Cover

Analysis of antimicrobial resistance and genetic correlations of Escherichia coli in dairy cow mastitis

Open Access
|Nov 2022

References

  1. Ahmed A.M., Furuta K., Shimomura K., Kasama Y., Shimamoto T.: Genetic characterization of multidrug resistance in <em>Shigella</em> spp. from Japan. J Med Microbiol 2006, 55, 1685–1691, doi: <a href="https://doi.org/10.1099/jmm.0.46725-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1099/jmm.0.46725-0.</a>
  2. Ahmed A.M., Motoi Y., Sato M., Maruyama A., Watanabe H., Fukumoto Y., Shimamoto T.: Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Appl Environ Microbiol 2007, 73, 6686–6690, doi: <a href="https://doi.org/10.1128/aem.01054-07." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/aem.01054-07.</a>
  3. Ai W., Zhou Y., Wang B., Zhan Q., Hu L., Xu Y., Guo Y., Wang L., Yu F., Li X.: First Report of Coexistence of blaSFO-1 and blaNDM-1β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of <em>Enterobacter hormaechei</em>. Front Microbiol 2021, 18, 12, 676113, doi: <a href="https://doi.org/10.3389/fmicb.2021.676113." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2021.676113.</a>
  4. Alam M.Z., Aqil F., Ahmad I., Ahmad S.: Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater. Braz J Microbiol 2013, 44, 799–806, doi: <a href="https://doi.org/10.1590/s1517-83822013000300021." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1590/s1517-83822013000300021.</a>
  5. Antimicrobial Resistance Collaborators: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655, doi: <a href="https://doi.org/10.1016/S0140-6736(21)02724-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0140-6736(21)02724-0.</a>
  6. Aslam N., Khan S., Usman T., Ali T.: Phylogenetic genotyping, virulence genes and antimicrobial susceptibility of <em>Escherichia coli</em> isolates from cases of bovine mastitis. J Dairy Res 2021, 88, 78–79, doi: <a href="https://doi.org/10.1017/S002202992100011X." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S002202992100011X.</a>
  7. Bahadori M., Motamedifar M., Derakhshandeh A., Firouzi R., Motamedi Boroojeni A., Alinejad M., Naziri Z.: Genetic relatedness of the <em>Escherichia coli</em> fecal population and strains causing urinary tract infection in the same host. MicrobiologyOpen 2019, 8, e00759, doi: <a href="https://doi.org/10.1002/mbo3.759." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mbo3.759.</a>
  8. Cai W., Fu Y., Zhang W., Chen X., Zhao J., Song W., Li Y., Huang Y., Wu Z., Sun R., Dong C., Zhang F.: Synergistic effects of baicalein with cefotaxime against <em>Klebsiella pneumoniae</em> through inhibiting CTX-M-1 gene expression. BMC Microbiol 2016, 16, 181, doi: <a href="https://doi.org/10.1186/s12866-016-0797-1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12866-016-0797-1.</a>
  9. Cheng J., Qu W., Barkema H.W., Nobrega D.B., Gao J., Liu G., De Buck J., Kastelic J.P., Sun H., Han B.: Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J Dairy Sci 2019, 102, 2416–2426, doi: <a href="https://doi.org/10.3168/jds.2018-15135." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2018-15135.</a>
  10. Cheng W., Han S.: Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments – A review. Asian-Australas J Anim Sci 2020, 33, 1699–1713, doi: <a href="https://doi.org/10.5713/ajas.20.0156." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5713/ajas.20.0156.</a>
  11. Clinical and Laboratory Standards Institute: VET08: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, Fourth Edition. CLSI, Wayne, PA, 2018.
  12. El Garch F., Youala M., Simjee S., Moyaert H., Klee R., Truszkowska B., Rose M., Hocquet D., Valot B., Morrissey I., de Jong A., VetPath Study Group: Antimicrobial susceptibility of nine udder pathogens recovered from bovine clinical mastitis milk in Europe 2015–2016: VetPath results. Vet Microbiol 2020, 245, 108644, doi: <a href="https://doi.org/10.1016/j.vetmic.2020.108644." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetmic.2020.108644.</a>
  13. European Medicines Agency.: Second ESV AC Report. European Surveillance of Veterinary Antimicrobial Consumption Report (ESV AC). Sales of veterinary antimicrobial agents in 19 EU/EEA countries in 2010, 2018.
  14. Gelband H., Miller-Petrie M., Pant S., Gandra S., Levinson J., Barter D., White A., Laxminarayan R.: The state of the world’s antibiotics. Center for Disease Dynamics, Economics &amp; Policy, Washington, D.C., 2015.
  15. Ghanbarpour R., Oswald E.: Phylogenetic distribution of virulence genes in <em>Escherichia coli</em> isolated from bovine mastitis in Iran. Res Vet Sci 2010, 88, 6–10, doi: <a href="https://doi.org/10.1016/j.rvsc.2009.06.003." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rvsc.2009.06.003.</a>
  16. Holmer I., Salomonsen C., Jorsal S., Astrup L., Jensen V., Høg B., Pedersen K.: Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet Res 2019, 15, 449, doi: <a href="https://doi.org/10.1186/s12917-019-2162-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12917-019-2162-8.</a>
  17. Ismail Z., Abutarbush S.: Molecular characterization of antimicrobial resistance and virulence genes of <em>Escherichia coli</em> isolates from bovine mastitis. Vet World 2020, 13, 1588–1593, doi: <a href="https://doi.org/10.14202/vetworld.2020.1588-1593." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14202/vetworld.2020.1588-1593.</a>
  18. Iwano H., Inoue Y., Takasago T., Kobayashi H., Furusawa T., Taniguchi K., Fujiki J., Yokota H., Usui M., Tanji Y., Hagiwara K., Higuchi H., Tamura Y.: Bacteriophage ΦSA012 Has a Broad Host Range against <em>Staphylococcus aureus</em> and Effective Lytic Capacity in a Mouse Mastitis Model. Biology 2018, 7, 8, doi: <a href="https://doi.org/10.3390/biology7010008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/biology7010008.</a>
  19. Kimera Z., Mshana S., Rweyemamu M., Mboera L., Matee M.: Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control 2020, 9, 37, doi: <a href="https://doi.org/10.1186/s13756-020-0697-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s13756-020-0697-x.</a>
  20. Levin-Reisman I., Ronin I., Gefen O., Braniss I., Shoresh N., Balaban N.Q.: Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830, doi: <a href="https://doi.org/10.1126/science.aaj2191." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/science.aaj2191.</a>
  21. Li Y., Yang L., Fu J., Yan M., Chen D., Zhang L.: Genotyping and high flux sequencing of the bacterial pathogenic elements - integrons. Microb Pathog 2018, 116, 22–25, doi: <a href="https://doi.org/10.1016/j.micpath.2017.12.073." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.micpath.2017.12.073.</a>
  22. Liu Y., Chen Y., Feng M., Chen J., Shen W., Zhang S.: Occurrence of antibiotics and antibiotic resistance genes and their correlations in river-type drinking water source, China. Environ Sci Pollut Res Int 2021, 28, 42339–42352, doi: <a href="https://doi.org/10.1007/s11356-021-13637-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11356-021-13637-8.</a>
  23. Maiden M.C., Bygraves J.A., Feil E., Morelli G., Russell J.E., Urwin R., Zhang Q., Zhou J., Zurth K., Caugant D.A., Feavers I.M., Achtman M., Spratt B.G.: Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998, 95, 3140–3145, doi: <a href="https://doi.org/10.1073/pnas.95.6.3140." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1073/pnas.95.6.3140.</a>
  24. Maiden M.C., Jansen van Rensburg M.J., Bray J.E., Earle S.G., Ford S.A., Jolley K.A., McCarthy N.D.: MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 2013, 11, 728–736, doi: <a href="https://doi.org/10.1038/nrmicro3093." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/nrmicro3093.</a>
  25. Martínez J.L.: Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367, doi: <a href="https://doi.org/10.1126/science.1159483." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/science.1159483.</a>
  26. Mather A.E., Denwood M.J., Haydon D.T., Matthews L., Mellor D.J., Coia J.E., Brown D.J., Reid S.W.: The prevalences of Salmonella genomic island 1 variants in human and animal <em>Salmonella typhimurium</em> DT104 are distinguishable using a Bayesian approach. PLoS One 2011, 6, e27220, doi: <a href="https://doi.org/10.1371/journal.pone.0027220." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0027220.</a>
  27. Natarajan M., Kumar D., Mandal J., Biswal N., Stephen S.: A study of virulence and antimicrobial resistance pattern in diarrhoeagenic <em>Escherichia coli</em> isolated from diarrhoeal stool specimens from children and adults in a tertiary hospital, Puducherry, India. J Health Popul Nutr 2018, 37, 17, doi: <a href="https://doi.org/10.1186/s41043-018-0147-z." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s41043-018-0147-z.</a>
  28. Navajas-Benito E.V., Alonso C.A., Sanz S., Olarte C., Martínez-Olarte R., Hidalgo-Sanz S., Somalo S., Torres C.: Molecular characterization of antibiotic resistance in <em>Escherichia coli</em> strains from a dairy cattle farm and its surroundings. J Sci Food Agric 2017, 97, 362–365, doi: <a href="https://doi.org/10.1002/jsfa.7709." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jsfa.7709.</a>
  29. Núñez-Samudio V., Pecchio M., Pimentel-Peralta G., Quintero Y., Herrera M., Landires I.: Molecular Epidemiology of <em>Escherichia coli</em> Clinical Isolates from Central Panama. Antibiotics 2021, 10, 899, doi: <a href="https://doi.org/10.3390/antibiotics10080899." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics10080899.</a>
  30. Oliveira L., Ruegg P.L.: Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin. J Dairy Sci 2014, 97, 5426–5436, doi: <a href="https://doi.org/10.3168/jds.2013-7756." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2013-7756.</a>
  31. Ombarak R.A., Zayda M.G., Awasthi S.P., Hinenoya A., Yamasaki S.: Serotypes, Pathogenic Potential, and Antimicrobial Resistance of <em>Escherichia coli</em> Isolated from Subclinical Bovine Mastitis Milk Samples in Egypt. Jpn J Infect Dis 2019, 72, 337–339, doi: <a href="https://doi.org/10.7883/yoken.JJID.2018.538." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7883/yoken.JJID.2018.538.</a>
  32. Osman K.M., Kappell A.D., Elhadidy M., ElMougy F., El-Ghany W.A.A., Orabi A., Mubarak A.S., Dawoud T.M., Hemeg H.A., Moussa I.M.I., Hessain A.M., Yousef H.M.Y.: Poultry hatcheries as potential reservoirs for antimicrobial-resistant <em>Escherichia coli</em>: A risk to public health and food safety. Sci Rep 2018, 8, 5859, doi: <a href="https://doi.org/10.1038/s41598-018-23962-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-018-23962-7.</a>
  33. Patel S., Wellington M., Shah R., Ferreira M.: Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clin Ther 2020, 42, 1649–1658, doi: <a href="https://doi.org/10.1016/j.clinthera.2020.07.004." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.clinthera.2020.07.004.</a>
  34. Qiao M., Ying G., Singer A., Zhu Y.: Review of antibiotic resistance in China and its environment. Environ Int 2018, 110, 160–172, doi: <a href="https://doi.org/10.1016/j.envint.2017.10.016." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envint.2017.10.016.</a>
  35. Rossolini G.M., Arena F., Pecile P., Pollini S.: Update on the antibiotic resistance crisis. Curr Opin Pharmacol 2014, 18, 56–60, <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.coph.2014.09.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.coph.2014.09.006</a></pub-id>
  36. Seegers H., Fourichon C., Beaudeau F.: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 2003, 34, 475–491, doi: <a href="https://doi.org/10.1051/vetres:2003027." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/vetres:2003027.</a>
  37. Song X., Wu H., Yin Z., Lian M., Yin C.: Endophytic Bacteria Isolated from <em>Panax ginseng</em> Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture. Molecules 2017, 22, 837, doi: <a href="https://doi.org/10.3390/molecules22060837." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/molecules22060837.</a>
  38. Souto A.C., Bonfietti L.X., Ferreira-Paim K., Trilles L., Martins M., Ribeiro-Alves M., Pham C.D., Martins L., Dos Santos W., Chang M., Brito-Santos F., Santos D.C., Fortes S., Lockhart S.R., Wanke B., Melhem M.S., Lazéra M.S., Meyer W.: Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian <em>Cryptococcus gattii</em> VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil. PLoS Negl Trop Dis 2016, 10, e0004885, doi: <a href="https://doi.org/10.1371/journal.pntd.0004885." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pntd.0004885.</a>
  39. Sukumar S., Roberts A.P., Martin F.E., Adler C.J.: Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria. J Dent Res 2016, 95, 969–976, doi: <a href="https://doi.org/10.1177/0022034516648944." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0022034516648944.</a>
  40. Suojala L., Simojoki H., Mustonen K., Kaartinen L., Pyörälä S.: Efficacy of enrofloxacin in the treatment of naturally occurring acute clinical <em>Escherichia coli</em> mastitis. J Dairy Sci 2010, 93, 1960–1969, doi: <a href="https://doi.org/10.3168/jds.2009-2462." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2009-2462.</a>
  41. Tartor Y., Abd El-Aziz N., Gharieb R., El Damaty H., Enany S., Soliman E., Abdellatif S., Attia A., Bahnass M., El-Shazly Y., Elbediwi M., Ramadan H.: Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in <em>Klebsiella pneumoniae</em> in Middle East. Front Microbiol 2021, 12, 770813, doi: <a href="https://doi.org/10.3389/fmicb.2021.770813." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2021.770813.</a>
  42. Wang D., Wang Z., Yan Z., Wu J., Ali T., Li J., Lv Y., Han B.: Bovine mastitis <em>Staphylococcus aureus</em>: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect Genet Evol 2015, 31, 9–16, doi: <a href="https://doi.org/10.1016/j.meegid.2014.12.039." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.meegid.2014.12.039.</a>
  43. Wirth T., Falush D., Lan R., Colles F., Mensa P., Wieler L H., Karch H., Reeves P. R., Maiden M.C., Ochman H., Achtman M.: Sex and virulence in <em>Escherichia coli</em>: an evolutionary perspective. Mol Microbiol 2006, 60, 1136–1151, doi: <a href="https://doi.org/10.1111/j.1365-2958.2006.05172.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1365-2958.2006.05172.x.</a>
  44. Zhang A., Wang H., Tian G., Zhang Y., Yang X., Xia Q., Tang J., Zou L.: Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. Int J Antimicrob Agents 2009, 33, 456–460, doi: <a href="https://doi.org/10.1016/j.ijantimicag.2008.10.030." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijantimicag.2008.10.030.</a>
Language: English
Page range: 571 - 579
Submitted on: Mar 23, 2022
Accepted on: Sep 28, 2022
Published on: Nov 4, 2022
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Ke Li, Mingyuan Hou, Lin Zhang, Mengyue Tian, Ming Yang, Li Jia, Yanyan Liang, Dongmin Zou, Ruonan Liu, Yuzhong Ma, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.