Have a personal or library account? Click to login
Analysis of antimicrobial resistance and genetic correlations of Escherichia coli in dairy cow mastitis Cover

Analysis of antimicrobial resistance and genetic correlations of Escherichia coli in dairy cow mastitis

Open Access
|Nov 2022

Figures & Tables

Fig. 1

Full minimum spanning tree using the goeBURST algorithm (n = 40). Each square represents a single sequence type (ST), and the circumference is proportional to the number of isolates within each ST. Grey regions represent a clonal complex. The numbers above the lines (1–5) represent the number of different alleles between the two ST types. The major nodes are indicated by in olive green
Full minimum spanning tree using the goeBURST algorithm (n = 40). Each square represents a single sequence type (ST), and the circumference is proportional to the number of isolates within each ST. Grey regions represent a clonal complex. The numbers above the lines (1–5) represent the number of different alleles between the two ST types. The major nodes are indicated by in olive green

Fig. 2

Molecular phylogenetic and antimicrobial resistance analysis of 40 E. coli isolates. The evolutionary tree was inferred using the maximum likelihood method based on the Tamura–Nei model. The bootstrap consensus tree inferred from 1,000 replicates was taken to represent the evolutionary history of the taxa analysed. The branches of the evolutionary tree were named with ID, location, and ST type of E. coli isolates. The same clonal complexes were highlighted in the same colour area. The height of the blue bar graph on the periphery of the evolutionary tree represents the number of drug-resistant genes (2, 3, 4, 5, 6) carried by E. coli isolates. The diameter of different antibiotic inhibition zones (6–34 mm) was displayed as a heat map where red represents high-resistance diameters (trending to susceptible) and blue represents low-resistance diameters (trending to resistant)
Molecular phylogenetic and antimicrobial resistance analysis of 40 E. coli isolates. The evolutionary tree was inferred using the maximum likelihood method based on the Tamura–Nei model. The bootstrap consensus tree inferred from 1,000 replicates was taken to represent the evolutionary history of the taxa analysed. The branches of the evolutionary tree were named with ID, location, and ST type of E. coli isolates. The same clonal complexes were highlighted in the same colour area. The height of the blue bar graph on the periphery of the evolutionary tree represents the number of drug-resistant genes (2, 3, 4, 5, 6) carried by E. coli isolates. The diameter of different antibiotic inhibition zones (6–34 mm) was displayed as a heat map where red represents high-resistance diameters (trending to susceptible) and blue represents low-resistance diameters (trending to resistant)

Pearson’s correlation coefficients (r) of resistance genes and corresponding antibiotics

Resistance geneAntimicrobials
AMPAMXCROCFZGENSTRNERAMIEMDOXSXTCIPENR
blaSHV0.2310.3170.3330.053---------
blaOXA−0.1140.2480.124−0.059---------
aac(2ʹ)----−0.27 3−0.12 5−0.0830.035-----
aacA4----0.3310.0350.281−0.053-----
aadA----0.4270.3530.105−0.059-----
erm(B)--------−0.04 7----
tet(A)---------−0.156---
tet(B)---------−0.347---
sul1----------- 0.174--
sul2----------- 0.343--
qnrB-----------−0.1060.035

Susceptibility of 40 E_ coli strains to 13 antibiotics commonly used in China

AntibioticDistribution of E. coli strains (number of strains/%)Decision criteria/Diameter of inhibitory zone (mm)
R1ISRIS
Ampicillin21/52.5%6/15.0%13/32.5%≤1314–16≥17
Amoxicillin18/45.0%3/7.5%19/47.5%≤1314–17≥18
Ceftriaxone19/47.5%1/2.5%20/50.0%≤1920–23≥24
Cefazolin31/77.5%8/20.0%1/2.5%≤1920–22≥23
Gentamicin13/32.5%027/67.5%≤1213–14≥15
Streptomycin12/30.0%5/12.5%23/57.5%≤1112–14≥15
Neomycin1/2.5%15/37.5%24/60.0%≤1112–16≥17
Amikacin1/2.5%1/2.5%38/95.0%≤1415–16≥17
Erythromycin17/42.5%21/52.5%2/5.0%≤1314–22≥23
Doxycycline14/35.0%5/12.5%21/52.5%≤1011–13≥14
Trimethoprim- sulfamethoxazole22/55.0%018/45.0%≤1213–16≥17
Ciprofloxacin7/17.5%033/82.5%≤1516–20≥21
Enrofloxacin6/5.0%11/27.5%23/57.5%≤1516–23≥24

Primer sequences, product sizes, annealing temperature and references used for the PCR in the study

GenePrimer sequence (5′–3′)Product size (bp)Annealing temperature (℃)Reference or GenBank accession no.
blaTEMATAAAATTCTTGAAGACGAAA GACAGTTACCAATGCTTAATC64353(25)
blaSHVTTTGTCGCTTCTTTACTCGCCTTTA GCCAGATCCATTTCTATCATGCCTA19856DQ247972
blaOXATCAACTTTCAAGATCGCA GTGTGTTTAGAATGGTGA59153(25)
aac(2')ACTGTGATGGGATACGCGTC CTCCGTCAGCGTTTCAGCTA48254(26)
aacA4CTTCAGGATGGCAAGTTGGT TCATCTCGTTCTCCGCTCAT28655(26)
aadACTGGAGGTCACTGTCGTGC CCGTGGATTGCCAAAGGTC27455X68089
erm(B)AAAACTTACCCGCCATACCA TTTGGCGTGTTTCATTGCTT12653MN461246
erm(C)GCTCGTGTCATTTCTGGGAGT AGCCTAGCAGCCATTTCTATC37553GQ483470
tet(A)CGGAGCAGAAACAAGAAAGCG GGATCAGGACCGGATACACCAT34557(26)
tet(B)CATTAATAGGCGCATCGCTG TGAAGGTCATCGATAGCAGG39153(26)
sul1GCCTGGAACTGCTGCTGATGC TCGCCTGCCAAACCGAACTCT31459(27)
sul2GCGCTCAAGGCAGATGGCATT GCGTTTGATACCGGCACCCGT79357(27)
qnrBGATCGTGAAAGCCAGAAAGG ACGATGCCTGGTAGTTGTCC51355(25)
adkATTCTGCTTGGCGCTCCGGG CCGTCAACTTTCGCGTATTT58354(20)
fumCTCACAGGTCGCCAGCGCTTC GTACGCAGCGAAAAAGATTC80654(20)
gyrBTCGGCGACACGGATGACGGC ATCAGGCCTTCACGCGCATC91160(20)
icdATGGAAAGTAAAGTAGTTGTTCCGGCACA GGACGCAGCAGGATCTGTT87854(20)
mdhATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT93260(20)
purACGCGCTGATGAAAGAGATGA CATACGGTAAGCCACGCAGA81654(20)
recACGCATTCGCTTTACCCTGACC TCGTCGAAATCTACGGACCGGA78058(20)

Sequence types, resistance phenotypes and resistance genes in 40 E_ coli strains

IDLocationMLSTResistance phenotypesResistance genes
1XushuiST10AMP-AMX-CRO-CFZ-GEN-STR-EM-DOX-SXT-ENRaadA, qnrB
2XushuiST10AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENRaadA, tet(B)
3XushuiST359AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENRblaSHV, aadA
4XushuiST10CFZ-EMaadA, tet(B), sul2
5XushuiST10AMP-AMX-CRO-CFZ-STR-NER-EM-DOX-SXT-CIP-ENRaadA, sul2
6XushuiST1585AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENRaacA4, aadA
7XushuiST359AMP-AMX-CRO-CFZ-GEN-STR-NER-AMI-EM-DOX-SXT-CIP-ENRblaSHV, blaOXA, aadA
8XushuiST359AMP-AMX-CRO-CFZ-GEN-NER-EM-DOX-SXT-ENRblaOXA, aacA4, aadA
9XushuiST359AMP-AMX-CRO-CFZ-GEN-STR-EM-DOX-SXT-CIP-ENRblaSHV, blaOXA, aadA, tet(B)
10XushuiST10CFZ-EMaadA, sul2
11XushuiST10CFZ-EMaadA, tet(B), sul2
12XushuiST359AMP-AMX-CRO-CFZ-GEN-NER-EM-SXT-ENRblaOXA, aadA, sul2
13XushuiST1125AMP-AMX-CRO-CFZ-STR-SXTaadA, tet(B)
14XushuiST1585AMP-AMX-CRO-CFZ-EM-DOX-SXT-ENRblaSHV, aadA, tet(B)
15XushuiST327AMP-AMX-CRO-CFZ-EM-DOX-ENRaadA, tet(B)
16XushuiST937AMP-AMX-CRO-CFZ-STR-EM-SXT-ENRaadA, tet(B)
17QingyuanST10717AMP-CFZ-STR-NER-EM-DOX-SXTaac(2ʹ), aadA, erm(B), tet(A), tet(B)
18QingyuanST942CFZ-NER-EM-DOXerm(B), tet(A), sul1, sul2
19QingyuanST446AMP-CFZ-GEN-STR-NER-EM-DOX-SXTaac(2ʹ), aadA, erm(B), tet(A), tet(B)
20QingyuanST1310AMP-AMX-CRO-CFZ-GEN-STR-NER-AMI-EMaac(2ʹ), erm(B), tet(A), tet(B), sul2
21QingyuanST515AMP-AMX-CRO-CFZ-STR-EM-DOX-SXT-ENRaac(2ʹ), erm(B), tet(A), sul1
22QingyuanST48AMP-CFZ-NER-EMaac(2ʹ), erm(B), tet(A), tet(B), sul1
23QingyuanST10CFZ-NER-EMaac(2ʹ), tet(A), sul2
24QuyangST1252AMP-AMX-CRO-CFZ-STR-EM-SXT-ENRaac(2ʹ), erm(B), tet(A), tet(B)
25QuyangST1079AMP-CFZ-EMtet(A), tet(B)
26QuyangST154CFZaac(2ʹ), erm(B), tet(A), tet(B), sul2
27QuyangST1585AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENRaadA, erm(B)
28QuyangST1167AMP-AMX-CRO-CFZ-STR-NER-EM-DOX-SXTaadA, erm(B), tet(A)
29ManchengST1610AMP-CFZ-EMaac(2ʹ), tet(A)
30ManchengST10NER-EMaac(2ʹ), tet(A), sul1, sul2
31ManchengST2741CFZ-EMaac(2ʹ), aadA, tet(A), tet(B)
32ManchengST2741CFZ-EMaac(2ʹ), tet(A), tet(B)
33ManchengST48AMP-CFZ-GEN-STR-EM-DOX-SXT-ENRaac(2ʹ), aadA, erm(B), tet(A), tet(B), sul1
34ManchengST10AMP-AMX-CRO-CFZ-EM-DOX-SXT-ENRaac(2ʹ), erm(B), tet(A), tet(B), sul1, sul2
35ManchengST906AMP-AMX-CRO-CFZ-EM-SXTaac(2ʹ), tet(A), tet(B)
36ManchengST48CFZ-EMaac(2ʹ), aadA, erm(B), tet(B), sul1, qnrB
37ManchengST48CFZ-EMerm(B), tet(B), sul1
38ManchengST48CFZ-EMaadA, erm(B), tet(B), sul1
39ManchengST906CFZ-EMaac(2ʹ), tet(B)
40ManchengST48AMP-AMX-CFZ-GEN-EM-DOX-SXTaadA, erm(B), sul1
Language: English
Page range: 571 - 579
Submitted on: Mar 23, 2022
Accepted on: Sep 28, 2022
Published on: Nov 4, 2022
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Ke Li, Mingyuan Hou, Lin Zhang, Mengyue Tian, Ming Yang, Li Jia, Yanyan Liang, Dongmin Zou, Ruonan Liu, Yuzhong Ma, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.