Have a personal or library account? Click to login
Preliminary study on gene regulation and its pathways in Chinese Holstein cows with clinical mastitis caused by Staphylococcus aureus Cover

Preliminary study on gene regulation and its pathways in Chinese Holstein cows with clinical mastitis caused by Staphylococcus aureus

Open Access
|May 2022

References

  1. Abebe R., Hatiya H., Abera M., Megersa B., Asmare K.: Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res 2016, 12, 270, doi: 10.1186/s12917-016-0905-3.
  2. Araújo E.R., Sponchiado M., Pugliesi G., Van Hoeck V., Mesquita F.S., Membrive C.M., Binelli M.: Spatio-specific regulation of endocrine-responsive gene transcription by periovulatory endocrine profiles in the bovine reproductive tract. Reprod Fertil Dev 2014, 28, 1533–1544, doi: 10.1071/rd14178.
  3. Ayeni F.A., Gbarabon T., Andersen C., Norskov-Lauritsen N.: Comparison of identification and antimicrobial resistance pattern of Staphylococcus aureus isolated from Amassoma, Bayelsa state, Nigeria. Afr Health Sci 2015, 15, 1282–1288, doi: 10.4314/ahs.v15i4.30.
  4. Banos G., Bramis G., Bush S.J., Clark E.L., McCulloch M.E.B., Smith J., Schulze G., Arsenos G., Hume D.A., Psifidi A.: The genomic architecture of mastitis resistance in dairy sheep. BMC Genomics 2017, 18, 624, doi: 10.1186/s12864-017-3982-1.
  5. Barkema H.W., Schukken Y.H., Lam T.J., Beiboer M.L., Wilmink H., Benedictus G., Brand A.: Incidence of clinical mastitis in dairy herds grouped in three categories by bulk milk somatic cell counts. J Dairy Sci 1998, 81, 411–419, doi: 10.3168/jds.S0022-0302 (98)75591-2.
  6. Bolger A.M., Lohse M., Usadel B.: Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120, doi: 10.1093/bioinformatics/btu170.
  7. Bradford B.J., Yuan K., Farney J.K., Mamedova L.K., Carpenter A.J.: Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J Dairy Sci 2015, 98, 6631–6650, doi: 10.3168/jds.2015-9683.
  8. Branco A., Yoshikawa F.S.Y., Pietrobon A.J., Sato M.N.: Role of Histamine in Modulating the Immune Response and Inflammation. Mediators Inflamm 2018, 9524075, doi: 10.1155/2018/9524075.
  9. Busso N., Chobaz-Péclat V., Hamilton J., Spee P., Wagtmann N., So A.: Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Res Ther 2008, 10, R42, doi: 10.1186/ar2400.
  10. Cheng W.N., Han S.G.: Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Australas J Anim Sci 2020, 33, 1699–1713, doi: 10.5713/ajas.20.0156.
  11. Claes J., Vanassche T., Peetermans M., Liesenborghs L., Vandenbriele C., Vanhoorelbeke K., Missiakas D., Schneewind O., Hoylaerts M.F., Heying R., Verhamme P.: Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein. Blood 2014, 124, 1669–1676, doi: 10.1182/blood-2014-02-558890.
  12. Dahl M.O., De Vries A., Galvão K.N., Maunsell F.P., Risco C.A., Hernandez J.A.: Combined effect of mastitis and parity on pregnancy loss in lactating Holstein cows. Theriogenology 2020, 143, 57–63, doi: 10.1016/j.theriogenology.2019.12.002.
  13. Dubois R.N., Abramson S.B., Crofford L., Gupta R.A., Simon L.S., Van De Putte L.B., Lipsky P.E.: Cyclooxygenase in biology and disease. FASEB J 1998, 12, 1063–1073.
  14. Estevez B., Du X.: New Concepts and Mechanisms of Platelet Activation Signaling. Physiology 2017, 32, 162–177, doi: 10.1152/physiol.00020.2016.
  15. Hogan J., Gonzalez R., Harmon R., Nickerson S., Oliver S., Pankey J., Smith K.: Laboratory Field Handbook of Bovine Mastitis, National Mastitis Council, Madison, WI, 1999.
  16. Jaeger A., Bardehle D., Oster M., Günther J., Muráni E., Ponsuksili S., Wimmers K., Kemper N.: Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro. Vet Res 2015, 46, 50, doi: 10.1186/s13567-015-0178-z.
  17. Jamali H., Barkema H.W., Jacques M., Lavallée-Bourget E.M., Malouin F., Saini V., Stryhn H., Dufour S.: Invited review: Incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows. J Dairy Sci 2018, 101, 4729–4746, doi: 10.3168/jds.2017-13730.
  18. Kawecki C., Lenting P.J., Denis C.V.: von Willebrand factor and inflammation. J Thromb Haemost 2017, 15, 1285–1294, doi: 10.1111/jth.13696.
  19. Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L.: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019, 37, 907–915, doi: 10.1038/s41587-019-0201-4.
  20. Kovaka S., Zimin A.V., Pertea G.M., Razaghi R., Salzberg S.L., Pertea M.: Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 2019, 20, 278, doi: 10.1186/s13059-019-1910-1.
  21. Li Y., Yu G., Yuan S., Tan C., Lian P., Fu L., Hou Q., Xu B., Wang H.: Cigarette Smoke-Induced Pulmonary Inflammation and Autophagy Are Attenuated in Ephx2-Deficient Mice. Inflammation 2017, 40, 497–510, doi: 10.1007/s10753-016-0495-z.
  22. Love M.I., Huber W., Anders S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15, 550, doi: 10.1186/s13059-014-0550-8.
  23. Motiño O., Francés D.E., Casanova N., Fuertes-Agudo M., Cucarella C., Flores J.M., Vallejo-Cremades M.T., Olmedilla L., Pérez Peña J., Bañares R., Boscá L., Casado M., Martín-Sanz P.: Protective Role of Hepatocyte Cyclooxygenase-2 Expression Against Liver Ischemia-Reperfusion Injury in Mice. Hepatology 2019, 70, 650–665, doi: 10.1002/hep.30241.
  24. Peetermans M., Meyers S., Liesenborghs L., Vanhoorelbeke K., De Meyer S.F., Vandenbriele C., Lox M., Hoylaerts M.F., Martinod K., Jacquemin M., Vanassche T., Verhamme P.: Von Willebrand factor and ADAMTS13 impact on the outcome of Staphylococcus aureus sepsis. J Thromb Haemost 2020, 18, 722–731, doi: 10.1111/jth.14686.
  25. Robinson M.D., McCarthy D.J., Smyth G.K.: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140, doi: 10.1093/bioinformatics/btp616.
  26. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13, 2498–2504, doi: 10.1101/gr.1239303.
  27. Sharun K., Dhama K., Tiwari R., Gugjoo M.B., Iqbal Yatoo M., Patel S.K., Pathak M., Karthik K., Khurana S.K., Singh R., Puvvala B., Amarpal Singh R., Singh K.P., Chaicumpa W.: Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021, 41, 107–136, doi: 10.1080/01652176.2021.1882713.
  28. Shi L., Lv X., Liu L., Yang Y., Ma Z., Han B., Sun D.: A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population. BMC Genet 2019, 20, 53, doi: 10.1186/s12863-019-0755-7.
  29. Tong C., Chen Q., Zhao L., Ma J., Ibeagha-Awemu E.M., Zhao X.: Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands. BMC Genomics 2017, 18, 468, doi: 10.1186/s12864-017-3858-4.
  30. Vanassche T., Kauskot A., Verhaegen J., Peetermans W.E., van Ryn J., Schneewind O., Hoylaerts M.F., Verhamme P.: Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb Haemost 2012, 107, 1107–1121, doi: 10.1160/th11-12-0891.
  31. Wang D., Liu L., Augustino S.M.A., Duan T., Hall T.J., MacHugh D.E., Dou J., Zhang Y., Wang Y., Yu Y.: Identification of novel molecular markers of mastitis caused by Staphylococcus aureus using gene expression profiling in two consecutive generations of Chinese Holstein dairy cattle. J Anim Sci Biotechnol 2020, 11, 98, doi: 10.1186/s40104-020-00494-7.
  32. Wang X., Su F., Yu X., Geng N., Li L., Wang R., Zhang M., Liu J., Liu Y., Han B.: RNA-Seq Whole Transcriptome Analysis of Bovine Mammary Epithelial Cells in Response to Intracellular Staphylococcus aureus. Front Vet Sci 2020, 7, 642, doi: 10.3389/fvets.2020.00642.
  33. Xu T., Dong Z., Wang X., Qi S., Li X., Cheng R., Liu X., Zhang Y., Gao M.Q.: IL-1β induces increased tight junction permeability in bovine mammary epithelial cells via the IL-1β-ERK1/2-MLCK axis upon blood-milk barrier damage. J Cell Biochem 2018, 119, 9028–9041, doi: 10.1002/jcb.27160.
  34. Yoshikawa T., Nakamura T., Yanai K.: Histamine N-Methyltransferase in the Brain. Int J Mol Sci 2019, 20, 737, doi: 10.3390/ijms20030737.
  35. Zaatout N., Ayachi A., Kecha M.: Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J Appl Microbiol 2020, 129, 1102–1119, doi: 10.1111/jam.14706
Language: English
Page range: 179 - 187
Submitted on: Nov 23, 2021
|
Accepted on: Apr 21, 2022
|
Published on: May 5, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Wenjia Wang, Rongling Li, Tingzhu Ye, Xinxin Zhang, Chao Chen, Ai-xin Liang, Li-guo Yang, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.