Have a personal or library account? Click to login
ASF -survivors’ sera do not inhibit African swine fever virus replication in vitro Cover

ASF -survivors’ sera do not inhibit African swine fever virus replication in vitro

Open Access
|Mar 2022

References

  1. Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J.M.: First Oral Vaccination of Eurasian Wild Boar Against African Swine Fever Virus Genotype II. Front Vet Sci 2019, 6, 137, doi: 10.3389/fvets.2019.00137.
  2. Blome S., Gabriel C., Beer M.: Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 2014, 32, 3879–3882, doi: 10.1016/ j.vaccine.2014.05.051.
  3. Borca M.V., Irusta P., Carrillo C., Afonso C.L., Burrage T., Rock D.L.: African Swine Fever Virus Structural Protein p72 Contains a Conformational Neutralizing Epitope. Virology 1994, 201, 413–418, doi: 10.1006/viro.1994.1311.
  4. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., Holinka L., Velazquez-Salinas L., Zhu J., Gladue D.P., Shisler J.L.: Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the I177L Gene Results in Sterile Immunity against the Current Epidemic Eurasia Strain. J Virol 2020, 94, e02017-19, doi: 10.1128/JVI.02017-19.
  5. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., Espinoza N., Velazquez-Salinas L., Gay C.G., Gladue D.P.: ASFV-G-ΔI177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses 2021, 13, 765, doi: 10.3390/v13050765.
  6. Bosch-Camós L., López E., Rodriguez F.: African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020, 6, 17, doi: 10.1186/s40813-020-00154-2.
  7. Chen W., Zhao D., He X., Liu R., Wang Z., Zhang X., Li F., Shan D., Chen H., Zhang J., Wang L., Wen Z., Wang X., Guan Y., Liu J., Bu Z.: A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China Life Sci 2020, 63, 623–634, doi: 10.1007/s11427-020-1657-9.
  8. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., Liverani E., Nix R., Silk R., Zhang F.: African swine fever virus proteins involved in evading host defence systems. Immunol Immunopathol 2004, 100, 117–134, doi: 10.1016/j.vetimm.2004.04.002.
  9. Dixon L.K., Chapman D.A.G., Netherton C.L., Upton C.: African swine fever virus replication and genomics. Virus Res 201, 173, 3–14, doi: 10.1016/j.virusres.2012.10.020.
  10. Escribano J.M.: Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization J Virol 1996, 70, 5689–5694, doi: 10.1128/JVI.70.8.5689-5694.1996.
  11. Escribano J.M., Galindo I., Alonso C.: Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Res 2013, 173, 101–109, doi: 10.1016/j.virusres.2012.10.012.
  12. Frant M., Gal A., Bocian Ł., Ziętek-Barszcz A., Niemczuk K., Woźniakowski G.: African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern. Agriculture 2021, 11, 45, doi: 10.3390/agriculture11010045.
  13. Galindo I., Alonso C.: African Swine Fever Virus: A Review. Viruses 2017, 9, 103, doi: 10.3390/v9050103.
  14. Goatley L.C., Reis A.L., Portugal R., Goldswain H., Shimmon G.L., Hargreaves Z., Ho C., Montoya M., Sánchez-Cordón P., Taylor G., Dixon L.K., Netherton C.L.: A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs Against Fatal Disease. Vaccines 2020, 8, 234, doi: 10.3390/vaccines8020234.
  15. Hernáez B., Guerra M., Salas M.L., Andrés G.: African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLOS Pathog 2016, 12, e1005595, doi: 10.1371/journal.ppat.1005595.
  16. Hühr J., Schäfer A., Schwaiger T., Zani L., Sehl J., Mettenleiter T.C., Blome S., Blohm U.: Impaired T‐cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transbound Emerg Dis 2020, 67, 3016–3032, doi: 10.1111/tbed.13678.
  17. Li G., Liu X., Yang M., Zhang G., Wang Z., Guo K., Gao Y., Jiao P., Sun J., Chen C., Wang H., Deng W., Xiao H., Li S., Wu H., Wang Y., Cao L., Jia Z., Shang L., Yang Ch., Guo Y., Rao Z.: Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. J Virol 2020, 94, e02125-19, doi: 10.1128/JVI.02125-19.
  18. Malogolovkin A., Burmakina G., Tulman E.R., Delhon G., Diel D.G., Salnikov N., Kutish G.F., Kolbasov D., Rock D.L.: African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. J Gen Virol 2015, 96, 866–873, doi: 10.1099/jgv.0.000024.
  19. Mazur-Panasiuk N., Walczak M., Juszkiewicz M., Woźniakowski G.: The spillover of African swine fever in Western Poland revealed its estimated origin on the basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L genomic sequences. Viruses 2020, 12, 1094, doi: 10.3390/v12101094.
  20. Neilan J., Zsak L., Lu Z., Burrage T., Kutish G.F., Rock D.L.: Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004, 319, 337–342, doi: 10.1016/j.virol.2003.11.011.
  21. Netherton C.L., Goatley L.C., Reis A.L., Portugal R., Nash R.H., Morgan S.B., Gault L., Nieto R., Norlin V., Gallardo C., Ho C.S., Sánchez-Cordón P.J., Taylor G., Dixon L.K.: Identification and Immunogenicity of African Swine Fever Virus Antigens. Front Immunol 2019, 10, 1318, doi: 10.3389/fimmu.2019.01318.
  22. Onisk D.V., Borca M.V., Kutish S., Kramer E., Irusta P., Rock D.L.: Passively Transferred African Swine Fever Virus Antibodies Protect Swine against Lethal Infection. Virology 1994, 198, 350–354, doi: 10.1006/viro.1994.1040.
  23. Oura C.A.L, Denyer M.S., Takamatsu H., Parkhouse R.M.E.: In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 2005, 86, 2445–2450, doi: 10.1099/vir.0.81038-0.
  24. Pérez-Núñez D., Sunwoo S.-Y., Sánchez E.G., Haley N., García-Belmonte R., Nogal M., Morozov I., Madden D., Gaudreault N., Mur L., Shivanna V., Richt J., Revilla Y.: Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs. Vet Immunol Immunopathol 2019, 208, 34–43, doi: 10.1016/j.vetimm.2018.11.018.
  25. Razzuoli E., Franzoni G., Carta T., Zinellu S., Amadori M., Modesto P., Oggiano A.: Modulation of Type I Interferon System by African Swine Fever Virus. Pathogens 2020, 9, 361, doi: 10.3390/pathogens9050361.
  26. Sánchez E.G., Pérez-Núñez D., Revilla Y.: Development of vaccines against African swine fever virus. Virus Res 2019, 265, 150–155, doi: 10.1016/j.virusres.2019.03.022.
  27. Schlafer D.H., McVicar J.W., Mebus C.A.: African swine fever convalescent sows: subsequent pregnancy and the effect of colostral antibody on challenge inoculation of their pigs. Am J Vet Res 1984, 45, 1361–1366.
  28. Sunwoo S.-Y., Pérez-Núñez D., Morozov I., Sánchez E., Gaudreault N., Trujillo J., Mur L., Nogal M., Madden D., Urbaniak K., Kim I., Ma W., Revilla Y., Richt J.: DNA-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus Armenia 2007 Strain. Vaccines 2019, 7, 12, doi: 10.3390/vaccines7010012.
  29. Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M.A., Argilaguet J.M., Netherton C.L., Oura C.A.L., Martins C., Rodríguez F.: Cellular immunity in ASFV responses. Virus Res 2013, 173, 110–121, doi: 10.1016/j.virusres.2012.11.009.
  30. Walczak M., Frant M., Juszkiewicz M., Szymankiewicz K., Bruczyńska M., Woźniakowski G.: Vertical transmission of anti-ASFV antibodies as one of potential causes of seropositive results among young wild boar population in Poland. Pol J Vet Sci 2020, 23, 21–25, doi: 10.24425/pjvs.2019.131415.
  31. Walczak M., Wasiak M., Dudek K., Kycko A., Szacawa E., Olech M., Woźniakowski G., Szczotka-Bochniarz A.: Blood Counts, Biochemical Parameters, Inflammatory, and Immune Responses in Pigs Infected Experimentally with the African Swine Fever Virus Isolate Pol18_28298_O111. Viruses 2021, 13, 521, doi: 10.3390/v13030521.
  32. Walczak M., Żmudzki J., Mazur-Panasiuk N., Juszkiewicz M., Woźniakowski G..: Analysis of the Clinical Course of Experimental Infection with Highly Pathogenic African Swine Fever Strain, Isolated from an Outbreak in Poland. Aspects Related to the Disease Suspicion at the Farm Level. Pathogens 2020, 9, 237, doi: 10.3390/pathogens9030237.
  33. Wang S., Zhang J., Zhang Y., Yang J., Wang L., Qi Y., Han X., Zhou X., Miao F., Chen T., Wang Y., Zhang F., Zhang S., Hu R.: Cytokine Storm in Domestic Pigs Induced by Infection of Virulent African Swine Fever Virus. Front Vet Sci 2021, 7, 601641, doi: 10.3389/fvets.2020.601641.
  34. Wardley R.C., Norley S.G., Wilkinson P.J., Williams S.: The role of antibody in protection against African swine fever virus. Vet Immunol Immunopathol 1985, 9, 201–212, doi: 10.1016/01652427(85)90071-6.
  35. Zsak L., Onisk D.V., Afonso C.L., Rock D.L.: Virulent African Swine Fever Virus Isolates Are Neutralized by Swine Immune Serum and by Monoclonal Antibodies Recognizing a 72-kDa Viral Protein. Virology 1993, 196, 596–602, doi: 10.1006/viro.1993.1515.
Language: English
Page range: 21 - 27
Submitted on: Dec 22, 2021
Accepted on: Mar 8, 2022
Published on: Mar 25, 2022
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Marek Walczak, Małgorzata Juszkiewicz, Krzesimir Szymankiewicz, Anna Szczotka-Bochniarz, Grzegorz Woźniakowski, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.