Aarestrup F.M.: Glycopeptide susceptibility among Danish <em>Enterococcus faecium</em> and <em>Enterococcus faecalis</em> isolates of animal and human origin and PCR identification of genes within the <em>vana</em> cluster. Antimicrob Agents Chemother 1996, 40, 1938–1940, doi: <a href="https://doi.org/10.1128/AAC.40.8.1938." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/AAC.40.8.1938.</a>
Agersø Y., Jensen L.B., Givskov M., Roberts M.C.: The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the <em>Bacillus cereus</em> group. FEMS Microbiol Lett 2002, 214, 251–256, doi: <a href="https://doi.org/10.1111/j.1574-6968.2002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.2002.</a> tb11355.x.
de Vries L.E., Vallès Y., Agersø Y., Vaishampayan P.A., García-Montaner A., Kuehl J.V., Christensen H., Barlow M., Francinoet P.M.: The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant. PLoS One 2011, 6, e21644, doi: <a href="https://doi.org/10.1371/journal.pone.0021644." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0021644.</a>
European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters, Version 9.0. EUCAST, Växjö, 2019. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/.">https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/</ext-link>
Foulquie Moreno M.R., Sarantinopoulos P., Tsakalidou E., De Vuyst L.: The role and application of enterococci in food and health. Int J Food Microbiol 2006, 106, 1–24, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2005.06.026." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2005.06.026.</a>
Franz C.M.A.P., Huch M., Abriouel H., Holzapfel W., Gálvez A.: Enterococci as probiotics and their implication in food safety. Int J Food Microbiol 2011, 151, 125–140, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2011.08.014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2011.08.014.</a>
Gaglio R., Couto N., Marques C., de Fatima Silva Lopes M., Moschetti G., Pomba C., Settanni L.: Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. Int J Food Microbiol 2016, 236, 107–14, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2016.07.020." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2016.07.020.</a>
Hammerum A.M., Jensen L.B., Aarestrup F.M.: Detection of the <em>satA</em> gene and transferability of virginiamycin resistance in <em>Enterococcus faecium</em> from food-animals. FEMS Microbiol Lett 1998, 168, 145–151, doi: <a href="https://doi.org/10.1111/j.1574-6968.1998.tb13267.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.1998.tb13267.x.</a>
Jensen L.B., Frimodt-Moeller N., Aarestrup F.M.: Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 1999, 170, 151–158, doi: <a href="https://doi.org/10.1111/j.1574-6968.1999.tb13368.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.1999.tb13368.x.</a>
Różańska H., Lewtak-Piłat A., Kubajka M., Weiner M.: Occurrence of Enterococci in Mastitic Cow’s Milk and their Antimicrobial Resistance. J Vet Res 2019, 63, 93–97, doi: <a href="https://doi.org/10.2478/jvetres-2019–0014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jvetres-2019–0014.</a>
Silva N., Igrejas G., Gonçalves A., Poeta P.: Commensal gut bacteria: distribution of <em>Enterococcus</em> species and prevalence of <em>Escherichia coli</em> phylogenetic groups in animals and humans in Portugal. Ann Microbiol 2012, 62, 449–459, doi: <a href="https://doi.org/10.1007/s13213-011-0308-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13213-011-0308-4.</a>
Silvetti T., Morandi S., Brasca M.: Does <em>Enterococcus faecalis</em> from traditional raw milk cheeses serve as a reservoir of antibiotic resistance and pathogenic traits? Foodborne Pathog Dis 2019, 16, 359–367, doi: <a href="https://doi.org/10.1089/fpd.2018.2542." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1089/fpd.2018.2542.</a>
Talaga-Ćwiertnia K., Bulanda M.: Drug resistance in the genus <em>Enterococcus</em> – current problem in humans and animals. Post Mikrobiol 2018, 57, 244–250, doi: <a href="https://doi.org/10.21307/PM-2018.57.3.244." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21307/PM-2018.57.3.244.</a>
Tansuphasiri U., Khaminthakul D., Pandii W.: Antibiotic resistance of enterococci isolated from frozen foods and environmental water. Southeast Asian J Trop Med Public Health 2006, 37, 162–170.
Výrostková J., Regecová I., Dudriková E., Maľová J., Zigo F., Kováčová M., Illek J.: Antimicrobial resistance of bacterial isolates from sheep and goat cheeses in eastern Slovakia. Pol J Vet Sci 2021, 24, 13–22, doi: <a href="https://doi.org/10.24425/pjvs.2020.135814." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.24425/pjvs.2020.135814.</a>