Have a personal or library account? Click to login
Occurrence and antimicrobial resistance of enterococci isolated from goat’s milk Cover

Occurrence and antimicrobial resistance of enterococci isolated from goat’s milk

Open Access
|Dec 2021

References

  1. Aarestrup F.M.: Glycopeptide susceptibility among Danish <em>Enterococcus faecium</em> and <em>Enterococcus faecalis</em> isolates of animal and human origin and PCR identification of genes within the <em>vana</em> cluster. Antimicrob Agents Chemother 1996, 40, 1938–1940, doi: <a href="https://doi.org/10.1128/AAC.40.8.1938." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/AAC.40.8.1938.</a>
  2. Agersø Y., Jensen L.B., Givskov M., Roberts M.C.: The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the <em>Bacillus cereus</em> group. FEMS Microbiol Lett 2002, 214, 251–256, doi: <a href="https://doi.org/10.1111/j.1574-6968.2002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.2002.</a> tb11355.x.
  3. Chajęcka-Wierzchowska W., Zadernowska A., García-Solache M.: Ready-to-eat dairy products as a source of multidrug-resistant <em>Enterococcus</em> strains: Phenotypic and genotypic characteristics. J Dairy Sci 2020, 103, 4068–4077, doi: <a href="https://doi.org/10.3168/jds.2019-17395." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2019-17395.</a>
  4. Clinical and Laboratory Standards Institute: M100-S29 Performance Standards for Antimicrobial Susceptibility Testing; Twenty ninth Informational Supplement. CLSI, Wayne, 2019.
  5. de Vries L.E., Vallès Y., Agersø Y., Vaishampayan P.A., García-Montaner A., Kuehl J.V., Christensen H., Barlow M., Francinoet P.M.: The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant. PLoS One 2011, 6, e21644, doi: <a href="https://doi.org/10.1371/journal.pone.0021644." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0021644.</a>
  6. Drahovska H., Slobodnikova L., Kocincova D., Seman M., Končekova R., Trupl J., Turňa J.: Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol 2004, 49, 763–768, doi: <a href="https://doi.org/10.1007/BF02931562." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02931562.</a>
  7. Dutka-Malen S., Evers S., Courvalin P.: Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 1995, 33, 24–27, doi: <a href="https://doi.org/10.1128/jcm.33.1.24-27.1995." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/jcm.33.1.24-27.1995.</a>
  8. European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters, Version 9.0. EUCAST, Växjö, 2019. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/.">https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/</ext-link>
  9. Foulquie Moreno M.R., Sarantinopoulos P., Tsakalidou E., De Vuyst L.: The role and application of enterococci in food and health. Int J Food Microbiol 2006, 106, 1–24, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2005.06.026." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2005.06.026.</a>
  10. Franz C.M.A.P., Huch M., Abriouel H., Holzapfel W., Gálvez A.: Enterococci as probiotics and their implication in food safety. Int J Food Microbiol 2011, 151, 125–140, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2011.08.014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2011.08.014.</a>
  11. Franz C.M.A.P., Muscholl-Silberhorn A.B., Yousif N.M.K., Vancanneyt M., Swings J., Holzapfel W.H.: Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl Environ Microbiol 2001, 67, 4385–4389, doi: <a href="https://doi.org/10.1128/AEM.67.9.4385-4389.2001." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/AEM.67.9.4385-4389.2001.</a>
  12. Gaglio R., Couto N., Marques C., de Fatima Silva Lopes M., Moschetti G., Pomba C., Settanni L.: Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. Int J Food Microbiol 2016, 236, 107–14, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2016.07.020." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2016.07.020.</a>
  13. Garrido A.M., Gálvez A., Pulido R.P.: Antimicrobial Resistance in Enterococci. J Infect Dis Ther 2014, 2, 150, doi: <a href="https://doi.org/10.4172/23320877.1000150." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4172/23320877.1000150.</a>
  14. Giraffa G.: Enterococci from foods. FEMS Microbiol Rev 2002, 26, 163–171, doi: <a href="https://doi.org/10.1111/j.1574-6976.2002.tb00608.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6976.2002.tb00608.x.</a>
  15. Hammerum A.M., Jensen L.B., Aarestrup F.M.: Detection of the <em>satA</em> gene and transferability of virginiamycin resistance in <em>Enterococcus faecium</em> from food-animals. FEMS Microbiol Lett 1998, 168, 145–151, doi: <a href="https://doi.org/10.1111/j.1574-6968.1998.tb13267.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.1998.tb13267.x.</a>
  16. Hershberger E., Oprea S.F., Donabedian S.M., Perri M., Bozigar P., Barttlett P., Zervos M.J.: Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 2005, 55, 127–130, doi: <a href="https://doi.org/10.1093/jac/dkh508." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jac/dkh508.</a>
  17. Jensen L.B., Frimodt-Moeller N., Aarestrup F.M.: Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 1999, 170, 151–158, doi: <a href="https://doi.org/10.1111/j.1574-6968.1999.tb13368.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.1999.tb13368.x.</a>
  18. Larsen J., Schonheyder H.C., Lester C.H., Olsen S.S., Porsbo L.J., Garcia-Migura L., Jensen L.B., Bisgaard M., Hammerum A.M.: Porcine-origin gentamicin-resistant <em>Enterococcus faecalis</em> in humans, Denmark. Emerg Infect Dis 2010, 16, 682–684, doi: <a href="https://doi.org/10.3201/eid1604.090500." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3201/eid1604.090500.</a>
  19. Lukášová J., Šustáčkova A.: Enterococci and antibiotic resistance. Acta Vet Brno 2003, 72, 315–323, doi: 10.2754/ avb200372020315.
  20. Ogier J.C., Serror P.: Safety assessment of dairy microorganisms: the <em>Enterococcus</em> genus. Int J Food Microbiol 2008, 126, 291–301, doi: <a href="https://doi.org/10.1016/j.ijfoodmicro.2007.08.017." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijfoodmicro.2007.08.017.</a>
  21. Patel A.R., Shah N.P., Prajapati J.B.: Antibiotic Resistance Profile of Lactic Acid Bacteria and Their Implications in Food Chain. World J Dairy Food Sci 2012, 7, 202–211, doi: <a href="https://doi.org/10.5829/idosi.wjdfs.2012.7.2.1113." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5829/idosi.wjdfs.2012.7.2.1113.</a>
  22. Różańska H., Lewtak-Piłat A., Kubajka M., Weiner M.: Occurrence of Enterococci in Mastitic Cow’s Milk and their Antimicrobial Resistance. J Vet Res 2019, 63, 93–97, doi: <a href="https://doi.org/10.2478/jvetres-2019–0014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jvetres-2019–0014.</a>
  23. Różańska H., Lewtak-Piłat A., Osek J.: Enterococci – multifaceted microorganisms (in Polish). Życie Weterynaryjne 2013, 88, 562–564.
  24. Ruiz P., Pérez-Martín F., Seseña S., Llanos Palop M.: Seasonal diversity and safety evaluation of enterococci population from goat milk in a farm. Dairy Sci Technol 2016, 96, 359–375, doi: <a href="https://doi.org/10.1007/s13594-015-0273-y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13594-015-0273-y.</a>
  25. Silva N., Igrejas G., Gonçalves A., Poeta P.: Commensal gut bacteria: distribution of <em>Enterococcus</em> species and prevalence of <em>Escherichia coli</em> phylogenetic groups in animals and humans in Portugal. Ann Microbiol 2012, 62, 449–459, doi: <a href="https://doi.org/10.1007/s13213-011-0308-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13213-011-0308-4.</a>
  26. Silvetti T., Morandi S., Brasca M.: Does <em>Enterococcus faecalis</em> from traditional raw milk cheeses serve as a reservoir of antibiotic resistance and pathogenic traits? Foodborne Pathog Dis 2019, 16, 359–367, doi: <a href="https://doi.org/10.1089/fpd.2018.2542." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1089/fpd.2018.2542.</a>
  27. Talaga-Ćwiertnia K., Bulanda M.: Drug resistance in the genus <em>Enterococcus</em> – current problem in humans and animals. Post Mikrobiol 2018, 57, 244–250, doi: <a href="https://doi.org/10.21307/PM-2018.57.3.244." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21307/PM-2018.57.3.244.</a>
  28. Tansuphasiri U., Khaminthakul D., Pandii W.: Antibiotic resistance of enterococci isolated from frozen foods and environmental water. Southeast Asian J Trop Med Public Health 2006, 37, 162–170.
  29. Vignaroli C., Zandri G., Aquilanti L., Pasquaroli S., Biavasco F.: Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from <em>Enterococcus durans</em> to a human <em>Enterococcus faecium</em>. Curr Microbiol 2011, 62, 1438–1447, doi: <a href="https://doi.org/10.1007/s00284-011-9880-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00284-011-9880-x.</a>
  30. Výrostková J., Regecová I., Dudriková E., Maľová J., Zigo F., Kováčová M., Illek J.: Antimicrobial resistance of bacterial isolates from sheep and goat cheeses in eastern Slovakia. Pol J Vet Sci 2021, 24, 13–22, doi: <a href="https://doi.org/10.24425/pjvs.2020.135814." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.24425/pjvs.2020.135814.</a>
Language: English
Page range: 449 - 455
Submitted on: Aug 30, 2021
Accepted on: Dec 14, 2021
Published on: Dec 20, 2021
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Marlena Gołaś-Prądzyńska, Jolanta G. Rola, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.