Bian G., Ma H., Luo M., Gong F., Li B., Wang G., Mohiuddin M., Liao M., Yuan J.: Identification and genomic analysis of two novel duck-origin GPV-related parvovirus in China. BMC Vet Res 2019, 15, 88, doi: <a href="https://doi.org/10.1186/s12917-019-1833-9." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12917-019-1833-9.</a>
Brown K.E., Green S.W., Young N.S.: Goose parvovirus – an autonomous member of the dependovirus genus? Virology 1995, 210, 283–291, doi: <a href="https://doi.org/10.1006/viro.1995.1345." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/viro.1995.1345.</a>
Chen S., Wang S., Cheng X., Xiao S., Zhu X., Lin F., Wu N., Wang J., Huang M., Zheng M., Chen S., Yu F.: Isolation and characterization of a distinct duck-origin goose parvovirus causing an outbreak of duckling short beak and dwarfism syndrome in China. Arch Virol 2016, 161, 2407–2416, doi: <a href="https://doi.org/10.1007/s00705-016-2926-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00705-016-2926-4.</a>
Chu C.Y., Pan M.J., Cheng J.T.: Genetic variation of the nucleocapsid genes of waterfowl parvovirus. J Vet Med Sci 2001, 63, 1165–1170, doi: <a href="https://doi.org/10.1292/jvms.63.1165." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1292/jvms.63.1165.</a>
Fan W., Sun Z., Shen T., Xu D., Huang K., Zhou J., Song S., Yan L.: Analysis of evolutionary processes of species jump in waterfowl parvovirus. Front Microbiol 2017, 8, 421, doi: <a href="https://doi.org/10.3389/fmicb.2017.00421." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2017.00421.</a>
Fu Q., Huang Y., Wan C., Fu G., Qi B., Cheng L., Shi S., Chen H., Liu R., Chen Z.: Genomic and pathogenic analysis of a Muscovy duck parvovirus strain causing short beak and dwarfism syndrome without tongue protrusion. Res Vet Sci 2017, 115, 393–400, doi: <a href="https://doi.org/10.1016/j.rvsc.2017.07.006." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rvsc.2017.07.006.</a>
Irvine R., Holmes P.: Diagnosis and control of goose parvovirus. In Practice 2010, 32, 382–386, doi: <a href="https://doi.org/10.1136/inpract.32.8.382." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1136/inpract.32.8.382.</a>
Ju H., Wei N., Wang Q., Wang C., Jing Z., Guo L., Liu D., Gao M., Ma B., Wang J.: Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose. Biochem Biophys Res Commun 2011, 409, 131–136, doi: <a href="https://doi.org/10.1016/j.bbrc.2011.04.129." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bbrc.2011.04.129.</a>
Koo B.S, Lee H.R., Jeon E.O., Han M.S., Min K.C., Lee S.B., Bae Y.J., Cho S.H., Mo J.S., Kwon H.K., Sung H.W., Kim J.N., Mo I.P.: Genetic characterization of three novel chicken parvovirus strains based on analysis of their coding sequences. Avian Pathol 2015, 44, 28–34, doi: <a href="https://doi.org/10.1080/03079457.2014.991693." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03079457.2014.991693.</a>
Le Gall-Reculé G., Jestin V., Chagnaud P., Blanchard P., Jestin A.: Expression of Muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins. J Gen Virol 1996, 77, 2159–2163, doi: <a href="https://doi.org/10.1099/0022-1317-77-9-2159." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1099/0022-1317-77-9-2159.</a>
Li C., Liu H., Li J., Liu D., Meng R., Zhang Q., Shaozhou W., Bai X., Zhang T., Liu M., Zhang Y.: A conserved epitope mapped with a monoclonal antibody against the VP3 protein of goose parvovirus by using peptide screening and phage display approaches. PloS One 2016, 11, e0147361, doi: <a href="https://doi.org/10.1371/journal.pone.0147361." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0147361.</a>
Li P., Lin S., Zhang R., Chen J., Sun D., Lan J., Song S., Xie Z., Jiang S.: Isolation and characterization of novel goose parvovirus-related virus reveal the evolution of waterfowl parvovirus. Transbound Emerg Dis 2018, 65, 284–295, doi: <a href="https://doi.org/10.1111/tbed.12751." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/tbed.12751.</a>
Li P., Zhang R., Chen J., Sun D, Lan J., Lin S., Song S., Xie Z., Jiang S.: Development of a duplex semi-nested PCR assay for detection of classical goose parvovirus and novel goose parvovirus-related virus in sick or dead ducks with short beak and dwarfism syndrome. J Virol Methods 2017, 249, 165–169, doi: <a href="https://doi.org/10.1016/j.jviromet.2017.09.011." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jviromet.2017.09.011.</a>
Liu H.M., Yang C., Liu M., Ma K., Huang X., Zhao Y., Hu D., Qi K.Z.: Pathological lesions in the immune organs of ducklings following experimental infection with goose parvovirus. Res Vet Sci 2019, 125, 212–217, doi: <a href="https://doi.org/10.1016/j.rvsc.2019.06.002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rvsc.2019.06.002.</a>
Liu W.J., Yang Y.T., Du S.M., Yi H.D., Xu D.N., Cao N., Jiang D.L., Huang Y.M., Tian Y.B.: Rapid and sensitive detection of goose parvovirus and duck-origin novel goose parvovirus by recombinase polymerase amplification combined with a vertical flow visualization strip. J Virol Methods 2019, 266, 34–40, doi: <a href="https://doi.org/10.1016/j.jviromet.2019.01.010." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jviromet.2019.01.010.</a>
Liu Y.Y., Yang W.T., Shi S.H., Li Y.J., Zhao L., Shi C.W., Zhou F.Y., Jiang Y.L., Hu J.T., Gu W., Yang G.L., Wang C.F.: Immunogenicity of recombinant <em>Lactobacillus plantarum</em> NC8 expressing goose parvovirus VP2 gene in BALB/c mice. J Vet Sci 2017, 18, 159–167, doi: <a href="https://doi.org/10.4142/jvs.2017.18.2.159." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4142/jvs.2017.18.2.159.</a>
Luo Q., Xu J., Huang C., Lei X., Cheng D., Liu W., Cheng A., Tang L., Fang J., Ou Y., Geng Y., Chen Z.: Impacts of duck-origin parvovirus infection on Cherry Valley ducklings from the perspective of gut microbiota. Front Microbiol 2019, 10, 624, doi: <a href="https://doi.org/10.3389/fmicb.2019.00624." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2019.00624.</a>
Ning K., Liang T., Wang M., Dong Y., Qu S., Zhang D.: Pathogenicity of a variant goose parvovirus, from short beak and dwarfism syndrome of Pekin ducks, in goose embryos and goslings. <em>Avian Pathol</em>. 2018, 47, 391–399, doi: <a href="https://doi.org/10.1080/03079457.2018.1459040." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03079457.2018.1459040.</a>
Niu X., Chen H., Yang J., Yu X., Ti J., Wang A., Diao Y.: Development of a TaqMan-based real-time PCR assay for the detection of Novel GPV. J Virol Methods 2016, 237, 32–37, doi: <a href="https://doi.org/10.1016/j.jviromet.2016.08.006." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jviromet.2016.08.006.</a>
Palya V.J., Zolnai A., Benyeda Z., Kovács E., Kardi V., Mató T.: Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus. Avian Pathol 2009, 38, 175–180, doi: <a href="https://doi.org/10.1080/03079450902737839." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03079450902737839.</a>
Poonia B., Dunn P.A., Lu H., Jarosinski K.W., Schat K.A.: Isolation and molecular characterization of a new Muscovy duck parvovirus from Muscovy ducks in the USA. Avian Pathol 2006, 35, 435–441, doi: <a href="https://doi.org/10.1080/03079450601009563." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03079450601009563.</a>
Ros C., Gerber M., Kempf C.: Conformational changes in the VP1-unique region of native human parvovirus B19 lead to exposure of internal sequences that play a role in virus neutralization and infectivity. J Virol 2006, 80, 12017–12024, doi: <a href="https://doi.org/10.1128/JVI.01435-06." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/JVI.01435-06.</a>
Shien J.H., Wang Y.S., Chen C.H., Shieh H.K., Hu C.C., Chang P.C.: Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe. Avian Pathol 2008, 37, 499–505, doi: <a href="https://doi.org/10.1080/03079450802356979." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03079450802356979.</a>
Tsai H.J., Tseng C.H., Chang P.C., Mei K., Wang S.C.: Genetic variation of viral protein 1 genes of field strains of waterfowl parvoviruses and their attenuated derivatives. Avian Dis 2004, 48, 512–521, doi: <a href="https://doi.org/10.1637/7172." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1637/7172.</a>
Vihinen-Ranta M., Wang D., Weichert W.S., Parrish C.R.: The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J Virol 2002, 76, 1884–1891, doi: <a href="https://doi.org/10.1128/JVI.76.4.1884-1891.2002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/JVI.76.4.1884-1891.2002.</a>
Wan C., Chen C., Cheng L., Chen H., Fu Q., Shi S., Fu G., Liu R., Huang Y.: Specific detection of Muscovy duck parvovirus infection by TaqMan-based real-time PCR assay. BMC Vet Res 2018, 14, 267, doi: <a href="https://doi.org/10.1186/s12917-018-1600-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12917-018-1600-3.</a>
Wan C., Chen C., Cheng L., Cheng L., Liu R., Shi S., Fu G., Chen H., Fu Q., Huang Y.: Specific detection and differentiation of classic goose parvovirus and novel goose parvovirus by TaqMan real-time PCR assay, coupled with host specificity. BMC Vet Res 2019, 15, 389, doi: <a href="https://doi.org/10.1186/s12917-019-2090-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12917-019-2090-7.</a>
Wan C., Cheng L., Chen C., Liu R., Shi S., Fu G., Chen H., Fu Q., Haung Y.: A duplex PCR assay for the simultaneous detection and differentiation of Muscovy duck parvovirus and goose parvovirus. Mol Cell Probes 2019, 47, 101439, doi: <a href="https://doi.org/10.1016/j.mcp.2019." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.mcp.2019.</a> 101439.
Wan C., Liu R., Chen C., Cheng L., Shi S., Fu G., Chen H., Fu Q., Huang Y.: Novel goose parvovirus in domestic Linwu sheldrakes with short beak and dwarfism syndrome, China. Transbound Emerg Dis 2019, 66, 1834–1839, doi: <a href="https://doi.org/10.1111/tbed.13280." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/tbed.13280.</a>
Wang J., Ling J., Wang Z., Huang Y., Zhu J., Zhu G.: Molecular characterization of a novel Muscovy duck parvovirus isolate: evidence of recombination between classical MDPV and goose parvovirus strains. BMC Vet Res 2017, 13, 327, doi: <a href="https://doi.org/10.1186/s12917-017-1238-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12917-017-1238-6.</a>
Wang K., Du S., Wang Y., Wang S., Luo X., Zhang Y., Liu C., Wang H., Pei Z., Hu G.: Isolation and identification of tiger parvovirus in captive Siberian tigers and phylogenetic analysis of VP2 gene. Infect Genet Evol 2019, 75, 103957, doi: <a href="https://doi.org/10.1016/j.meegid.2019.103957." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.meegid.2019.103957.</a>
Wang K., Wang C.J., Pan L., Wang G.J., Qi K.Z., Liu H.M.: Isolation and characterization of a goose parvovirus from Yan goose. Acta Virol 2016, 60, 333–335, doi: <a href="https://doi.org/10.4149/av_" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4149/av_</a> 2016_03_333.
Xiao S., Chen S., Cheng X., Lin F., Wang S., Zhu X., Yu B., Huang M., Wang J., Wu N., Zheng M., Chen S., Yu F.: The newly emerging duck-origin goose parvovirus in China exhibits a wide range of pathogenicity to main domesticated waterfowl. Vet Microbiol 2017, 203, 252–256, doi: <a href="https://doi.org/10.1016/j.vetmic." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetmic.</a> 2017.03.012.
Yang J., Chen H., Wang Z., Yu X., Niu X., Tang Y., Diao Y.: Development of a quantitative loop-mediated isothermal amplification assay for the rapid detection of novel goose parvovirus. Front Microbiol 2017, 8, 2472, doi: <a href="https://doi.org/10.3389/fmicb." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.</a> 2017.02472.
Yen T.Y., Li K.P., Ou S.C., Shien J.H., Lu H.M., Chang P.C.: Construction of an infectious plasmid clone of Muscovy duck parvovirus by TA cloning and creation of a partially attenuated strain. Avian Pathol 2015, 44, 124–128, doi: <a href="https://doi.org/10.1080/03079457." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03079457.</a> 2015.1008399.
Yu K., Ma X., Sheng Z., Qi L., Liu C., Wang D., Huang B., Li F., Song M.: Identification of goose-origin parvovirus as a cause of newly emerging beak atrophy and dwarfism syndrome in ducklings. J Clin Microbiol 2016, 54, 1999–2007, doi: <a href="https://doi.org/10.1128/JCM.03244-15." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/JCM.03244-15.</a>
Yu T.F., Li M., Yan B., Shao S.L., Fan X.D., Wang J., Wang D.N.: Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus. Arch Virol 2016, 161, 2269–2272, doi: <a href="https://doi.org/10.1007/s00705-016-2879-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00705-016-2879-7.</a>
Zhang J., Liu P., Wu Y., Wang M., Jia R., Zhu D., Liu M., Yang Q., Wu Y., Zhao X., Zhang S., Liu Y., Zhang L., Yu Y., You Y., Chen S., Cheng A.: Growth characteristics of the novel goose parvovirus SD15 strain <em>in vitro</em>. BMC Vet Res 2019, 15, 63, doi: <a href="https://doi.org/10.1186/s12917-019-1807-y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12917-019-1807-y.</a>
Zhang Y., Li Y., Liu M., Zhang D., Guo D., Liu C., Zhi H., Wang X., Li G., Li N., Liu S., Xiang W., Tong G.: Development and evaluation of a VP3-ELISA for the detection of goose and Muscovy duck parvovirus antibodies. J Virol Methods. 2010, 163, 405–409, doi: <a href="https://doi.org/10.1016/j.jviromet.2009.11.002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jviromet.2009.11.002.</a>