Have a personal or library account? Click to login
Effects of vitamin C and magnesium L-threonate treatment on learning and memory in lead-poisoned mice Cover

Effects of vitamin C and magnesium L-threonate treatment on learning and memory in lead-poisoned mice

Open Access
|Jun 2021

References

  1. Anderson D.W., Mettil W.A., Schneider J.S.: Rearing environment, sex and developmental lead exposure modify gene expression in the hippocampus of behaviorally naïve animals. Neurochem Int 2013, 62, 510–520, doi: 10.1016/j.neuint. 2013.01.003.
  2. Correa M., Miquel M., Aragon C.M.G.: Lead acetate potentiates brain catalase activity and enhances ethanol-induced locomotion in mice. Pharmacol Biochem Behav 2000, 66, 137–142, doi: 10.1016/S0091-3057(00)00204-5.
  3. Diab Abdel Aziz A., Zahra M.H., Attia M.S., Shehata A.M.: Physiological and biochemical studies on the protective effect of Ficus carica leaf extract, vitamin C or their combination on liver toxicity induced by lead acetate in male rats. Biomed ResTher 2018, 5, 2733–2745, doi: 10.15419/bmrat.v5i10.488.
  4. Djukić-Ćosić D., Ninković M., Malicević Z., Plamenac-Bulat Z., Matović V.: Effect of supplemental magnesium on the kidney levels of cadmium, zinc, and copper of mice exposed to toxic levels of cadmium. Biol Trace Elem Res 2006, 114, 281–291, doi: 10.1385/BTER:114:1:281.
  5. Eshginia S. Marjani A.: The effect of vitamin C on the erythrocyte antioxidant enzymes in intoxicated-lead rat offsprings. J Clin Diag Res 2013, 7, 1078–1081, doi: 10.7860/JCDR/2013/5310.3059.
  6. Goyer R. A., Cherian M.G.: Ascorbic acid and EDTA treatment of lead toxicity in rats.” Life Sci 1979, 24, 433–438, doi: 10.1016/0024-3205(79)90215-7.
  7. Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L., Hediger M.A.: Cloning and characterization of a mammalian proton-coupled metal-ion transporter.” Nature 1997, 388, 422–488, doi: 10.1038/41343.
  8. Huang F., Schneider J.S.: Effects of lead exposure on proliferation and differentiation of neural stem cells derived from different regions of embryonic rat brain. Neurotoxicology 2004, 25, 1001–1012, doi: 10.1016/j.neuro.2004.03.010.
  9. Ibrahim N. M., Eweis E.A., El-Beltagi H.S., Abdel-Mobdy Y.E.: Effect of lead acetate toxicity on experimental male albino rat. Asian Pac J Trop Biomed 2012, 2, 41–46, doi: 10.1016/S2221-1691(11)60187-1.
  10. Kang M.Y., Kim H.-B., Piao C., Lee K.H., Hyun J.W., Chang I.-Y., You H.J.: The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ 2013, 20, 117–129, doi: 10.1038/cdd.2012.102.
  11. Korge P., Calmettes G., Weiss J.N.: Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta 2015, 1847, 514–525, doi: 10.1016/j.bbabio. 2015.02.012.
  12. Lee Jin Suk: A molecular basis for the efficacy of magnesium treatment following traumatic brain injury in rats. J Neurotrauma 2004, 21, 549–561, doi: 10.1089/089771504774129883.
  13. Liu Y., Guo Y., Wang Z., Nie W.: Effects of source and level of magnesium on catalase activity and its gene expression in livers of broiler chickens. Arch Anim Nutr 2007, 61, 292–300, doi: 10.1080/17450390701432019.
  14. Nilsson K.: Spectrophotometric measurement automatization for the analysis of enzymatic processes. PhD Thesis, Uppsala University Faculty of Science and Technology, Uppsala, Sweden, 2010.
  15. Riffel A.P.K., Santos M.C.Q., de Souza J.A., Scheid T., Horst A., Kolberg C., Belló-Klein A., Partata W.A.: Treatment with ascorbic acid and α-tocopherol modulates oxidative-stress markers in the spinal cord of rats with neuropathic pain. Braz J Med Biol Res 2018, 51, e7097, doi: 10.1590/1414-431X20177097.
  16. Scheers N.M., Sandberg A.-S.: Ascorbic acid uptake affects ferritin, Dcytb and Nramp2 expression in Caco-2 cells. Eur J Nutr 2008, 47, 401–408, doi: 10.1007/s00394-008-0741-8.
  17. Schneider J. S., Anderson D.W., Talsania K., Mettil W.A., Vadigepalli R.: Effects of developmental lead exposure on the hippocampal transcriptome: influences of sex, developmental period, and lead exposure level. Toxicol Sci 2012, 129, 108–125, doi: 10.1093/toxsci/kfs189.
  18. Sharma S., Raguvanshi B.P., Shukla S.: Toxic effects of lead exposure in rats: involvement of oxidative stress, genotoxic effect, and the beneficial role of N-acetylcysteine supplemented with selenium. J Environ Pathol Toxicol Oncology 2014, 33, 19–32, doi: 10.1615/JEnvironPatholToxicolOncol.2014009712.
  19. Simon J.A., Hudes E.S.: Relationship of ascorbic acid to blood lead levels. JAMA 1999, 281, 2289–2293, doi: 10.1001/jama. 281.24.2289.
  20. Singh S., Srivastava A., Allen T., Bhagat N., Singh N.: Identification of heavy metal toxicity–induced biomarkers and the protective tole of ascorbic acid supplementation in Channa punctatus. Int J Pharm Sci Res 2020, 11, 1098–1109, doi: 10.13040/IJPSR.0975-8232.11(3).1098-09.
  21. Slutsky I., Abumaria N., Wu L.-J., Huang C., Zhang L., Li B., Zhao X., Govindarajan A., Zhao M.-G., Zhuo M., Tonegawa S., Liu G.: Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65, 165–177, doi: 10.1016/j.neuron.2009.12.026.
  22. Soltaninejad K., Kebriaeezadeh A., Minalee B., Ostad S.N., Hosseini R., Azizi E., Abdollahi M.: Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain. Human Experimental Toxicol 2003, 22, 417–423, doi: 10.1191/0960327103ht385oa.
  23. Su L.J., Zhang J.H., Gomez H., Murugan R., Hong X., Dongxue X., Jiang F., Peng Z.-Y.: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019, 5080843, doi: 10.1155/2019/5080843.
  24. Travica, N., Ried K., Sali A., Scholey A., Hudson I., Pipingas A.: Vitamin C status and cognitive function: a systematic review. Nutrients 2017, 9, 2017, 960, doi: 10.3390/nu9090960.
  25. Vieira, L.R., Gravato C., Soares A.M.V.M., Morgado F., Guilhermino L.: Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere, 2009, 76, 1416–1427, doi: 10.1016/j.chemosphere.2009.06.005.
  26. Wang Q., Luo W., Zhang W., Liu M., Song H., Chen J.: Involvement of DMT1 +IRE in the transport of lead in an in vitro BBB model. Toxicol in Vitro 2011, 25, 991–998, doi: 10.1016/j.tiv.2009.11.006.
  27. Wang X., Li G.J., Zheng W.: Upregulation of DMT1 expression in choroidal epithelia of the blood-CSF barrier following manganese exposure in vitro. Brain Res 2006, 1097, 1–10, doi: 10.1016/j.brainres.2006.04.046.
  28. Were F. H., Kamau G.N., Shiundu P.M., Wafula G.A., Moturi C.M.: Air and blood lead levels in lead acid battery recycling and manufacturing plants in Kenya. J Occup Environ Hyg, 2012, 9, 340–344, doi: 10.1080/15459624.2012.673458.
  29. Xiao Y., Fu H., Han X., Hu X., Gu H., Chen Y., Wei Q, Hu Q.: Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats. PLoS One 2014, 9, e115556, doi: 10.1371/journal.pone.0115556.
  30. Zheng W., Aschner M., Ghersi-Egea J.-F.: Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 2003, 192, 1–11 , doi: 10.1016/S0041-008X(03)00251-5.
Language: English
Page range: 217 - 223
Submitted on: Nov 27, 2020
Accepted on: May 21, 2021
Published on: Jun 8, 2021
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Kemajl Bislimi, Ilir Mazreku, Jeton Halili, Valbona Aliko, Kushtrim Sinani, Liridon Hoxha, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.