Bussy U., Delaforge M., El-Bekkali C., Ferchaud-Roucher V., Krempf M., Tea I., Galland N., Jacquemin D., Boujtita M.: Acebutolol and alprenolol metabolism predictions: Comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 2013, 405, 6077–6085.
Chen D., Cao X., Tao Y., Wu Q., Pan Y., Peng D., Liu Z., Huang L., Wang Y., Wang X., Yuan Z.: Development of a liquid chromatography–tandem mass spectrometry with ultrasound-assisted extraction and auto solid-phase clean-up method for the determination of Fusarium toxins in animal derived foods. J Chromatogr A 2013, 1311, 21–29.
Chen D., Li X., Tao Y., Pan Y., Wu Q., Liu Z., Peng D., Wang X., Huang L., Wang Y., Yuan Z.: Development of a liquid chromatography-tandem mass spectrometry with ultrasound-assisted extraction method for the simultaneous determination of sudan dyes and their metabolites in the edible tissues and eggs of food-producing animals. J Chromatogr B Anal Technol Biomed Life Sci 2013, 939, 45–50.
Chen L., Hofmann D., Klumpp E., Xiang X., Chen Y., Küppers S.: Bottom-up approach for the reaction of xenobiotics and their metabolites with model substances for natural organic matter by electrochemistry-mass spectrometry (EC-MS). Chemosphere 2012, 89, 1376–1383.
de la Cruz Yaguez L.I., Pingarron Carrazon J.M., Polo Diez L.M.: Polarographic study of the 1-(2,4-dimethylphenylazo)-2-naphthol (Sudan II) in hydroalcoholic medium. Electrochim Acta 1986, 31, 119–121.
Djoumbou-Feunang Y., Fiamoncini J., Gil de la Fuente A., Greiner R., Manach C., Wishart D.S.: BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform 2019, 11, 1–25.
Karst U.: Electrochemistry/Mass Spectrometry (EC/MS)— A New Tool To Study Drug Metabolism and Reaction Mechanisms. Angew Chemie Int Ed 2004, 43, 2476–2478.
Lian Y., Gao W., Zhou L., Wu N., Lu Q., Han W., Tie X.: Occurrence of Sudan I in Paprika Fruits Caused by Agricultural Environmental Contamination. J Agric Food Chem 2014, 62, 4072–4076.
Lizier T.M., Zanoni T.B., de Oliveira D.P., Zanoni M.V.B.: Electrochemical reduction as a powerful tool to highlight the possible formation of by-products more toxic than Sudan III dye. Int J Electrochem Sci 2012, 7, 7784–7796.
Piątkowska M., Jedziniak P., Olejnik M., Żmudzki J., Posyniak A.: Absence of evidence or evidence of absence? A transfer and depletion study of Sudan I in eggs. Food Chem 2018, 239, 598–602.
Pielesz A., Baranowska I., Rybak A., Włochowicz A.: Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes. Ecotoxicol Environ Saf 2002, 53, 42–47.
Szultka-Młynska M., Buszewski B.: Electrochemistry-mass spectrometry for in-vitro determination of selected chemotherapeutics and their electrochemical products in comparison to in-vivo approach. Talanta 2016, 160, 694–703.
Xu H., Heinze T.M., Paine D.D., Cerniglia C.E., Chen H.: Sudan azo dyes and Para Red degradation by prevalent bacteria of the human gastrointestinal tract. Anaerobe 2010, 16, 114–119.