Have a personal or library account? Click to login
Investigation of Deep Learning Models for Analysis of Heart Disorders in Smart Health Care based IoT Environment Cover

Investigation of Deep Learning Models for Analysis of Heart Disorders in Smart Health Care based IoT Environment

By: Jewel Sengupta  
Open Access
|Jun 2024

References

  1. A. A Hong, S., Fu, Z., Zhou, R., Yu, J., Li, Y., Wang, K., & Cheng, G. (2020). CardioLearn: A cloud deep learning service for cardiac disease detection from electrocardiogram. arXiv preprint arXiv:2007.02165.
  2. Umer, M., Aljrees, T., Karamti, H., Ishaq, A., Alsubai, S., Omar, M., Bashir, A. K., & Ashraf, I. (2023). Heart failure patients monitoring using IoT-based remote monitoring system. Scientific Reports, 13(1), 19213.
  3. Zhang, J., Wang, Q., Wu, J., & Yao, L. (2021). IoT-based cardiac care using predictive analytics and deep learning: A smart healthcare system. IEEE Access, 9, 7894–7903. https://doi.org/10.1109/ACCESS.2021.3049507.
  4. Kumar, P., Gupta, R., & Kumar, A. (2022). IoT and AI integration for cardiovascular disease diagnosis: A deep learning approach. Multimedia Tools and Applications, 81, 34527–34542. https://doi.org/10.1007/s11042-021-10684-9.
  5. Raza, K., & Mohd, S. (2021). AI and IoT-enabled intelligent healthcare system for cardiac care: Challenges and solutions. AI in Medicine, 126, 102192. https://doi.org/10.1016/j.artmed.2021.102192.
  6. Mehmood, A., Raza, S., Rehman, A., & Bashir, S. (2021). A deep learning-based IoT framework for real-time cardiac health monitoring. Journal of Ambient Intelligence and Humanized Computing, 12(11), 9693–9705. https://doi.org/10.1007/s12652-021-03169-2.
  7. Das, S., Roy, S., Ghosh, S., & Paul, S. (2023). A novel IoT-enabled heart disease prediction system using a fusion of CNN and RNN models. Healthcare Technology Letters, 10(2), 56–64. https://doi.org/10.1049/htl2.2023.0021.
  8. Ahmad, F., Nisar, S., Khalid, S., & Janjua, N. K. (2023). An explainable AI approach for IoT-enabled secure healthcare monitoring. IEEE Internet of Things Journal, 10(3), 2347–2356. https://doi.org/10.1109/JIOT.2023.3207426.
  9. Huang, G., Zhang, Q., & Wu, X. (2022). Explainable AI for wearable edge devices in healthcare IoT: A practical perspective. Sensors and Actuators B: Chemical, 366, 131847. https://doi.org/10.1016/j.snb.2022.131847
  10. Sharma, T., Bhardwaj, A., & Singh, R. (2023). Blockchain-based explainable AI framework for edge-enabled healthcare IoT systems. Sensors, 23(12), 4412. https://doi.org/10.3390/s23124412.
  11. Chen, T., Zhang, Z., Liu, L., Luo, H., & Xiong, N. (2022). A hybrid deep learning approach for automated cardiovascular disease diagnosis using IoT-enabled wearable sensors. Journal of Biomedical Informatics, 134, 104163. https://doi.org/10.1016/j.jbi.2022.104163.
  12. Alazab, M., Awadalla, M., & Meshram, A. A. (2021). Deep learning for IoT-enabled heart disease diagnosis: A review and future directions. Sensors, 21(22), 7410. https://doi.org/10.3390/s21227410.
  13. Rao, G.M., Ramesh, D., Sharma, V. et al. AttGRU-HMSI: enhancing heart disease diagnosis using hybrid deep learning approach. Sci Rep 14, 7833 (2024). https://doi.org/10.1038/s41598-024-56931-4
  14. Xia, B., Innab, N., Kandasamy, V. et al. Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization. Sci Rep 14, 21777 (2024). https://doi.org/10.1038/s41598-024-71932-z
  15. Subashini, A., Kanaka Raju, P. An IoT-Based Heart Disease Diagnosis System Using Gradient Boosting and Deep Convolution Neural Network. SN COMPUT. SCI. 5, 23 (2024). https://doi.org/10.1007/s42979-023-02340-9
  16. Umer, M., Aljrees, T., Karamti, H., Ishaq, A., Alsubai, S., Omar, M., Bashir, A. K., & Ashraf, I. (2023). Heart failure patients monitoring using IoT-based remote monitoring system. Scientific reports, 13(1), 19213. https://doi.org/10.1038/s41598-023-46322-6
  17. Patro, S. P., & Padhy, N. (2023). A Secure IoT-Cloud Based Remote Health Monitoring for Heart Disease Prediction Using Machine Learning and Deep Learning Techniques. Engineering Proceedings, 56(1), 241. https://doi.org/10.3390/ASEC2023-16580
  18. Nancy, A. A., Ravindran, D., Raj Vincent, P. M. D., Srinivasan, K., & Gutierrez Reina, D. (2022). IoT-Cloud-Based Smart Healthcare Monitoring System for Heart Disease Prediction via Deep Learning. Electronics, 11(15), 2292. https://doi.org/10.3390/electronics11152292
  19. Amor, N., Feki, M., & Kachroudi, A. (2020). Convolutional neural networks for heart disease prediction in IoT-based systems. Journal of Electrical Engineering & Technology, 15(6), 2569–2578.
  20. Wang, L., & Yan, X. (2020). Real-time health monitoring and prediction of heart disorders using machine learning and IoT-based systems. Computers in Biology and Medicine, 125, 103957.
  21. Ali, Farman & El-Sappagh, Shaker & Islam, S. M. Riazul & Kwak, Daehan & Ali, Amjad & Imran, Muhammad & Kwak, Kyung. (2020). A Smart Healthcare Monitoring System for Heart Disease Prediction Based On Ensemble Deep Learning and Feature Fusion. Information Fusion. 63. 10.1016/j.inffus.2020.06.008.
Language: English
Page range: 1 - 16
Submitted on: Mar 22, 2024
Accepted on: Apr 11, 2024
Published on: Jun 15, 2024
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Jewel Sengupta, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.