References
- Hammouti, H. E., Hamza, D., Shihada, B., Alouini, M. -S., & Shamma, J. S. (2021). The optimal and the greedy: Drone association and positioning schemes for the Internet of UAVs. IEEE Internet Things Journal, 8, 14066–14079.
- Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computers & Communications, 177, 185–194.
- Li, J., Xiong, Y., She, J., & Wu, M. (2020). A path planning method for sweep coverage with multiple UAVs. IEEE Internet Things Journal, 7, 8967–8978.
- Jiang, W., Lyu, Y., & Li, Y. (2022). UAV path planning and collision avoidance in 3D environments based on POMPD and improved grey wolf optimizer. Aerospace Science and Technology, 121. DOI:10.1016/j.ast.2021.107314.
- Wu, Y., Wu, S., & Hu, X. (2021). Cooperative path planning of UAVs & UGVs for a persistent surveillance task in urban environments. IEEE Internet Things Journal, 8, 4906–4919.
- Oubbati, O. S., Atiquzzaman, M., Baz, A., Alhakami, H., & Ben-Othman, J. (2021). Dispatch of UAVs for urban vehicular networks: A deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 70, 13174–13189.
- Oubbati, O. S., Lakas, A., & Guizani, M. (2022). Multi-agent deep reinforcement learning for wireless-powered UAV networks. IEEE Internet Things Journal. DOI: 10.1109/JIOT.2022.3150616.
- Oubbati, O. S., Atiquzzaman, M., Lakas, A., Baz, A., Alhakami, H., & Alhakami, W. (2021). Multi-UAV-enabled AoI-aware WPCN: A multi-agent reinforcement learning strategy. In Proceedings of IEEE INFOCOM (pp. 1–6), Canada.
- Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., & Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309-1332.
- Trujillo, J. -C., Munguia, R., Guerra, E., & Grau, A. (2018). Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments. Sensors, 18(5), 1351.
- Du, H., Wang, W., Xu, C., Xiao, R., & Sun, C. (2020). Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion. Sensors, 20(3), 919.
- Ramezani, M., Tinchev, G., Iuganov, E., & Fallon, M. (2020). Online LiDAR-SLAM for Legged Robots with Robust Registration and Deep-Learned Loop Closure. arXiv preprint arXiv:2001.10249.
- Montemerlo, M. (2003). A Factored Solution to the Simultaneous Localization and Mapping Problem with Unknown Data Association. Ph.D. thesis, Carnegie Mellon University.
- Loo, S. Y., Mashohor, S., Tang, S. H., & Zhang, H. (2020). DeepRelativeFusion: Dense Monocular SLAM using Single-Image Relative Depth Prediction. arXiv preprint arXiv:2006.04047.
- Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computers & Communications, 149, 270–299.
- Qu, C., Gai, W., Zhong, M., & Zhang, J. (2020). A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Applied Soft Computing, 89, 1–12.
- Qadir, Z., Zafar, M. H., Moosavi, S. K. R., Le, K., & Mahmud, M. A. P. (2021). Autonomous UAV path planning optimization using a metaheuristic approach for pre-disaster assessment. IEEE Internet Things Journal. DOI: 10.1109/JIOT.2021.3137331.
- Tang, J., Liu, G., & Pan, Q. (2021). A Review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA Journal of Automatica Sinica, 8, 1627–1643.
- Chai, X., Zheng, Z., Xiao, J., & Yan, L. (2021). Multi-strategy fusion differential evolution algorithm for UAV path planning in a complex environment. Aerospace Science and Technology, 121. DOI: 10.1016/j.ast.2021.107287.
- Ahmad, I., & Guvenc, I. (2022). Machine Learning-Based Beamforming for Unmanned Aerial Vehicles Equipped with Reconfigurable Intelligent Surfaces. IEEE Wireless Communication Magazine, August.
- Kaleem, Z., Ahmad, I., & Jamalipur, A. (2021). Artificial Intelligence-Driven Real-Time Automatic Modulation Classification Scheme for Next-Generation Cellular Networks. IEEE Access, November.
- Narmeen, R., Ahmad, I., Costa, D. B. D., & Muhaidat, S. (2021). Shortest Propagation Delay-based Relay Selection for Underwater Acoustic Sensor Networks. IEEE Access, 37923–37935.
- Ahmad, U., Ahmad, I., Xiao, J., & Chang, K. H. (2020). Cooperative Resource Management for C-V2I Communications in a Dense Urban Environment. Vehicular Communications, August.
- Ahmad, I., & Chang, K. H. (2019). Mission-critical user priority-based random-access scheme for collision resolution for coexisting PS-LTE and LTE-M networks. IEEE Access, 7, 115505–115517.
- Ahmad, I., Chang, K. H. (2019). Effective SNR mapping and link adaptation strategy for next-generation underwater acoustic communications networks: a cross-layer approach. IEEE Access, 7, 44150-44164.
- Ahmad, I., Chen, W., & Chang, K. H. (2017). LTE-railway user priority-based cooperative resource allocation schemes for coexisting public safety and railway networks. IEEE Access, 5, 7958-8000.
- Ahmad, I., Chang, K. H. (2019). Downlink power allocation strategy for next-generation underwater acoustic communications networks. Electronics, October.
- Kaleem, Z., Khaliq, M. Z., Khan, A., Ahmad, I., & Duong, T. Q. (2018). PS-CARA: Context-aware resource allocation scheme for mobile public safety networks. Sensors, 18(5), 1–17.
- Chen, W., Ahmad, I., & Chang, K. H. (2017). Co-channel interference management using eICIC/FeICIC with coordinated scheduling for the coexistence of PS-LTE and LTE-R networks. EURASIP Journal on Wireless Communications and Networking, 34, 1–14.
- Ahmad, I., Chang, K. H. (2019). Mission-critical user priority-based cooperative resource allocation schemes for multi-layer next-generation public safety networks. Physical Communication, November.
- Ahmad, I., Nguyen, L. D., & Ha, D. B. (2019). Quality-of-service aware game theory-based uplink power control for 5G heterogeneous networks. Mobile Networks and Applications, 24(2), 556–563.
- He, J., Chen, W., Ahmad, I., Shi, L., & Chang, K. H. (2019). Compressive sensing-based random access for machine-type communications considering the tradeoff between link performance and latency. EURASIP Journal on Wireless Communications and Networking (JWCN), 1-11.
- Shi, L., Ahmad, I., He, Y., & Chang, K. H. (2018). Hidden Markov model-based drone sound recognition using MFCC technique in practical noisy environments. Journal of Communications and Networks, 20(5), 509-518.
- He, Y., Ahmad, I., Shi, L., & Chang, K. H. (2019). SVM-based drone sound recognition using the combination of HLA and WPT techniques in practical noisy environments. KSII Transactions on Internet and Information Systems, May.
- Guo, J., Ahmad, I., & Chang, K. H. (2020). Classification, positioning, and tracking of drones by HMM using acoustic circular microphone array beamforming. EURASIP Journal of Wireless Communication and Networking, 2020(9), 1–19.
- Hu, T., Ahmad, I., Alamgir, & Chang, K. H. (2020). 3D Optimal Surveillance Trajectory Planning for Multi-UAVs using Particle Swarm Optimization with Surveillance Area Priority. IEEE Access, May.
- Ahmad, I., Jang, J. Y., & Chang, K. H. (2020). QoS Priority-Based Mobile Personal Cell Deployment with Load Balancing for Interference Reduction between Users on Coexisting Public Safety and Railway LTE Networks. Electronics, 9(12), 1–13.