Have a personal or library account? Click to login
Massive Connectivity and Low-Latency for Next-Generation Internet of Things: A Filtered OFDM-based Deep Learning Approach Cover

Massive Connectivity and Low-Latency for Next-Generation Internet of Things: A Filtered OFDM-based Deep Learning Approach

Open Access
|Dec 2023

References

  1. Nokia Networks. (2014). LTE-M—optimizing LTE for the internet of things white paper. [Online]. Available: http://networks.nokia.com/.
  2. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). 5G-enabled tactile internet. IEEE Journal on Selected Areas in Communications, 34(3), 460–473.
  3. Hussain, S. M., Yusof, K. M., Hussain, S. A., & Khan, A. B. (2022). An Efficient Interface Selection Scheme (DSRC/LTE) of Vehicles for Data Dissemination Enabling V2V Communication to Support Internet of Vehicles (IoV). Soft Computing and Signal Processing. Advances in Intelligent Systems and Computing, 1340. Springer.
  4. 3GPP. (2014). Technical specification 22.368, V13.0.0. [Online]. Available: http://www.3gpp.org/.
  5. Kishore, G. S., & Rallapalli, H. (2021). HFQAM-Based Filtered OFDM: A Novel Waveform Design with Hybrid Modulation for Next-Generation Wireless Systems. Inventive Systems and Control. Lecture Notes in Networks and Systems, 204. Springer.
  6. Pouyanfar, S., et al. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM. Computing Surveys, 51(5), 92:1–92:36.
  7. Simeone, O. (2018). A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 648–664.
  8. Ye, H., Li, G. Y., & Juang, B. (2018). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.
  9. Luong, T. V., Ko, Y., Vien, N. A., Nguyen, D. H. N., & Matthaiou, M. (2019). Deep learning-based detector for OFDM-IM. IEEE Wireless Communications Letters, 8(4), 1159–1162.
  10. Balevi, E., & Andrews, J. G. (2019). One-bit OFDM receivers via deep learning. IEEE Transactions on Communications, 67(6), 4326–4336.
  11. Zhang, J., Wen, C., Jin, S., & Li, G. Y. (2019). Artificial intelligence-aided receiver for a CP-free OFDM system: Design, simulation, and experimental test. IEEE Access, 7, 58901–58914.
  12. Kim, M., Lee, W., Yoon, J., & Jo, O. (2019). Toward the realization of encoder and decoder using deep neural networks. IEEE Communications Magazine, 57(5), 57–63.
  13. Matsumine, T., & Ochiai, H. (2019). A novel PAPR reduction scheme for polar-coded OFDM systems. IEEE Communications Letters, 23(12), 2372–2375.
  14. Ahmad, I., & Chang, K. H. (2019). Downlink power allocation strategy for next-generation underwater acoustic communications networks. Electronics, 8(11), 1297.
Language: English
Page range: 115 - 121
Submitted on: Sep 15, 2023
Accepted on: Nov 10, 2023
Published on: Dec 15, 2023
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Sajjad Hussain, Aftab Hussain, Muhmmad Waleed Aftab, Hamza Kundi, Irfan Ullah, Abid Ali, Shahid Rasool, Umar Ali Khan, Hassan M. Al-Jawahry, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.