Have a personal or library account? Click to login
Computational Intelligence-based Data Analytics for Sentiment Classification on Product Reviews Cover

Computational Intelligence-based Data Analytics for Sentiment Classification on Product Reviews

Open Access
|Dec 2023

References

  1. Bhateja, V., Yang, X.S., Lin, J.C.W., & Das, R. (2023). Evolution in Computational Intelligence. Evolution.
  2. Diekson, Z.A., Prakoso, M.R.B., Putra, M.S.Q., Syaputra, M.S.A.F., Achmad, S., & Sutoyo, R. (2023). Sentiment analysis for customer review: Case study of Traveloka. Procedia Computer Science, 216, 682-690.
  3. Taherdoost, H., & Madanchian, M. (2023). Artificial intelligence and sentiment analysis: A review in competitive research. Computers, 12(2), 37.
  4. Mutinda, J., Mwangi, W., & Okeyo, G. (2023). Sentiment analysis of text reviews using lexicon-enhanced bert embedding (LeBERT) model with convolutional neural network. Applied Sciences, 13(3), 1445.
  5. Patruni, M.R., Angadi, A., Gorripati, S.K., & Saraswathi, P. (2023). Artificial Intelligence Techniques in Text and Sentiment Analysis. In Handbook of Research on Artificial Intelligence Applications in Literary Works and Social Media (pp. 171-191). IGI Global.
  6. Do, H.H., Prasad, P.W.C., Maag, A., & Alsadoon, A. (2019). Deep learning for aspect-based sentiment analysis: a comparative review. Expert systems with applications, 118, 272-299.
  7. Haque, T.U., Saber, N.N., & Shah, F.M. (2018, May). Sentiment analysis on large scale Amazon product reviews. In 2018 IEEE international conference on innovative research and development (ICIRD) (pp. 1-6). IEEE.
  8. Fauzi, M.A. (2019). Word2Vec model for sentiment analysis of product reviews in Indonesian language. International Journal of Electrical and Computer Engineering, 9(1), 525.
  9. Verma, P., Dumka, A., Bhardwaj, A., & Ashok, A. (2022). Product Review-Based Customer Sentiment Analysis Using an Ensemble of mRMR and Forest Optimization Algorithm (FOA). International Journal of Applied Metaheuristic Computing (IJAMC), 13(1), 1-21.
  10. Sindhura, S., Praveen, S.P., Safali, M.A., & Rao, N. (2021, September). Sentiment Analysis for Product Reviews Based on Weakly-Supervised Deep Embedding. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 999-1004). IEEE.
  11. Krishnan, H., Elayidom, M.S., & Santhanakrishnan, T. (2022). Sentiment analysis of product reviews using weighted distance-based whale optimisation assisted deep belief network. International Journal of Business Information Systems, 39(2), 241-277.
  12. Bhuvaneshwari, P., Rao, A.N., Robinson, Y.H., & Thippeswamy, M.N. (2022). Sentiment analysis for user reviews using Bi-LSTM self-attention based CNN model. Multimedia Tools and Applications, 81(9), 12405-12419.
  13. Mehbodniya, A., Rao, M.V., David, L.G., Nigel, K.G.J., & Vennam, P. (2022). Online product sentiment analysis using random evolutionary whale optimization algorithm and deep belief network. Pattern Recognition Letters, 159, 1-8.
  14. Liu, Y., Lu, J., Yang, J., & Mao, F. (2020). Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax. Mathematical Biosciences and Engineering, 17(6), 7819-7837.
  15. Nandal, N., Tanwar, R., & Pruthi, J. (2020). Machine learning based aspect level sentiment analysis for Amazon products. Spatial Information Research, 28(5), 601-607.
  16. Sasikala, P., & Mary Immaculate Sheela, L. (2020). Sentiment analysis of online product reviews using DLMNN and future prediction of online product using IANFIS. Journal of Big Data, 7(1), 1-20.
  17. Onan, A. (2019, August). Deep learning based sentiment analysis on product reviews on Twitter. In International Conference on Big Data Innovations and Applications (pp. 80-91). Springer, Cham.
  18. Ferreira, R., Freitas, F., de Souza Cabral, L., Lins, R.D., Lima, R., França, G., Simskez, S.J., & Favaro, L. (2013, November). A four dimension graph model for automatic text summarization. In 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) (Vol. 1, pp. 389-396). IEEE.
  19. Kumar, A., Narapareddy, V.T., Srikanth, V.A., Malapati, A., & Neti, L.B.M. (2020). Sarcasm detection using multi-head attention based bidirectional LSTM. Ieee Access, 8, 6388-6397
  20. Ewees, A.A., Abd Elaziz, M., & Houssein, E.H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 112, 156-172.
  21. Iqbal, A., Amin, R., Iqbal, J., Alroobaea, R., Binmahfoudh, A., & Hussain, M. (2022). Sentiment Analysis of Consumer Reviews Using Deep Learning. Sustainability, 14(17), 10844.
Language: English
Page range: 84 - 104
Submitted on: Aug 17, 2023
Accepted on: Sep 13, 2023
Published on: Dec 15, 2023
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Ramy Riad Al-Fatlawy, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.