References
- Aljedaani, W., Rustam, F., Mkaouer, M. W., Ghallab, A., Rupapara, V., Washington, P. B., Lee, E., & Ashraf, I. (2022). Sentiment analysis on Twitter data integrating TextBlob and deep learning models: The case of US airline industry. Knowledge-Based Systems, 255, 109780. https://doi.org/10.1016/J.KNOSYS.2022.109780
- Atanasova, T., Kasheva, M., Sulova, S., & Vasilev, J. (2010). Analysis of the possible application of Data Mining, Text Mining and Web Mining in business intelligent systems. The 33rd International Convention MIPRO, 1294–1297. https://doi.org/10.13140/2.1.1027.5840
- Awajan, I., Mohamad, M., & Al-Quran, A. (2021). Sentiment Analysis Technique and Neutrosophic Set Theory for Mining and Ranking Big Data from Online Reviews. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3067844
- Bâra, A., & Lungu, I. (2012). Improving Decision Support Systems with Data Mining Techniques”. In Advances in Data Mining Knowledge Discovery and Applications. https://doi.org/10.5772/47788
- Biswas, E., Karabulut, M. E., Pollock, L., & Vijay-Shanker, K. (2020). Achieving Reliable Sentiment Analysis in the Software Engineering Domain using BERT. Proceedings - 2020 IEEE International Conference on Software Maintenance and Evolution, ICSME 2020. https://doi.org/10.1109/ICSME46990.2020.00025
- Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2). https://doi.org/10.1109/MIS.2013.30
- Colón-Ruiz, C., & Segura-Bedmar, I. (2020). Comparing deep learning architectures for sentiment analysis on drug reviews. Journal of Biomedical Informatics, 110, 103539. https://doi.org/10.1016/J.JBI.2020.103539
- Cristescu, M. P., Mara, D. A., Nerișanu, R. A., & Culda, L. C. (2024). Leveraging Free Tools in Financial Sentiment Analysis. In C. Oprean-Stan (Ed.), Application of Novel Research Methods. The Study of Current Economic Phenomena. Peter Lang Verlag. https://doi.org/10.3726/B21691
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://github.com/tensorflow/tensor2tensor
- HarishRao, M., ShashikumarD.RHarishRao, M., & D.R, S. (2017). Automatic Product Review Sentiment Analysis Using Vader and Feature Visulaization. International Journal of Computer Science Engineering and Information Technology Research, 7(4), 53–66. https://doi.org/10.24247/IJCSEITRAUG20178
- He, L., & Zheng, K. (2019). How do general-purpose sentiment analyzers perform when applied to health-related online social media data? Studies in Health Technology and Informatics, 264. https://doi.org/10.3233/SHTI190418
- Hutto, C. J., & Gilbert, E. (2014). VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014. https://doi.org/10.1609/icwsm.v8i1.14550
- Kotelnikova, A., Paschenko, D., Bochenina, K., & Kotelnikov, E. (2022). Lexicon-Based Methods vs. BERT for Text Sentiment Analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13217 LNCS. https://doi.org/10.1007/978-3-031-16500-9_7
- Kouadri, W. M., Benbernou, S., Ouziri, M., Palpanas, T., & Amor, I. Ben. (2022). SA-Q: Observing, Evaluating, and Enhancing the Quality of the Results of Sentiment Analysis Tools. Proc. VLDB Endow., 15, 3658–3661. https://doi.org/10.14778/3554821.3554868
- Liu, Y., Lu, J., Yang, J., & Mao, F. (2020). Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax. Mathematical Biosciences and Engineering, 17(6). https://doi.org/10.3934/MBE.2020398
- Li, X., Bing, L., Zhang, W., & Lam, W. (2019). Exploiting bert for end-to-end aspect-based sentiment analysis_. W-NUT@EMNLP 2019 - 5th Workshop on Noisy User-Generated Text, Proceedings. https://doi.org/10.18653/v1/d19-5505
- Loria, S. (2022). TextBlob: Simplified Text Processing — TextBlob 0.19.0 documentation. https://textblob.readthedocs.io/en/dev/
- Marfani, H., Hina, S., & Tabassum, H. (2022). Analysis of Learners’ Sentiments on MOOC Forums using Natural Language Processing Techniques. 3rd International Conference on Innovations in Computer Science and Software Engineering, ICONICS 2022. https://doi.org/10.1109/ICONICS56716.2022.10100401
- Mindoro, J. N., Malbog, M. A. F., Nipas, M. D. S., Susa, J. A. B., Acoba, A. G., & Gulmatico, J. S. (2022). Sentiment Analysis in Customer Experience in Philippine Courier Delivery Services using VADER Algorithm Thru Chatbot Interviews. ICPC2T 2022 - 2nd International Conference on Power, Control and Computing Technologies, Proceedings. https://doi.org/10.1109/ICPC2T53885.2022.9777007
- Moussa, M., Mohamed, E., & Haggag, M. (2018). A generic lexicon-based framework for sentiment analysis. International Journal of Computers and Applications, 42, 463–473. https://doi.org/10.1080/1206212X.2018.1483813
- Nassirtoussi, K. A., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653–7670. https://doi.org/10.1016/J.ESWA.2014.06.009
- Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
- Peng, R. D., & Matsui, E. (2016). The Art of Data Science: A Guide for Anyone who Works with Data. Lulu.com. https://books.google.ro/books?id=ZDH9DAEACAAJ
- Prasad, M. P. R. K., Jahnavi, M. S., Reddy, M. R. J., Rama, K. V., & Narendra, K. (2022). Sentiment Analysis on Reviews of E-commerce Sites Using BERT. IJFANS International Journal of Food and Nutritional Sciences, 11(12), 2024–2033. https://doi.org/10.48047/IJFANS/V11/I12/214
- Sayeed, M. S., Mohan, V., & Muthu, K. S. (2023). BERT: A Review of Applications in Sentiment Analysis. In HighTech and Innovation Journal (Vol. 4, Issue 2). https://doi.org/10.28991/HIJ-2023-04-02-015
- Stancu, A.-M. R., Pompiliu, C. M., & Stoyanova, M. (2020). Data Mining Algorithms for Knowledge Extraction. In S. L. Fotea, I. Ş. Fotea, & S. A. Văduva (Eds.), Challenges and Opportunities to Develop Organizations Through Creativity, Technology and Ethics (pp. 349–357). Springer International Publishing. https://doi.org/10.1007/978-3-030-43449-6_20
- Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to Fine-Tune BERT for Text Classification? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11856 LNAI, 194–206. https://doi.org/10.1007/978-3-030-32381-3_16
- Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. https://arxiv.org/pdf/1706.03762v7
- Venkit, P. N., Srinath, M., & Wilson, S. (2023). Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models. ArXiv, abs/2307.09209. https://doi.org/10.48550/ARXIV.2307.09209
- Vidya, K., & Janani, S. (2022). Analogy of Machine Learning Approaches and BERT for Sentiment Analysis. Journal of Information Technology and Digital World, 4(1), 52–60. https://doi.org/10.36548/jitdw.2022.1.006
- Wu, X., Lv, S., Zang, L., Han, J., & Hu, S. (2019). Conditional BERT Contextual Augmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11539 LNCS. https://doi.org/10.1007/978-3-030-22747-0_7
- Xu, H., Shu, L., Yu, P., & Liu, B. (2020). Understanding Pre-trained BERT for Aspect-based Sentiment Analysis. In D. Scott, N. Bel, & C. Zong (Eds.), Proceedings of the 28th International Conference on Computational Linguistics (pp. 244–250). International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.coling-main.21
- Yang, Z., Asyrofi, M. H., & Lo, D. (2021). BiasRV: uncovering biased sentiment predictions at runtime. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. https://doi.org/10.1145/3468264.3473117