Have a personal or library account? Click to login
Exploring the Efficacy and Bias of Sentiment Analysis Tools in Customer Reviews Cover

Exploring the Efficacy and Bias of Sentiment Analysis Tools in Customer Reviews

Open Access
|May 2025

References

  1. Aljedaani, W., Rustam, F., Mkaouer, M. W., Ghallab, A., Rupapara, V., Washington, P. B., Lee, E., & Ashraf, I. (2022). Sentiment analysis on Twitter data integrating TextBlob and deep learning models: The case of US airline industry. Knowledge-Based Systems, 255, 109780. https://doi.org/10.1016/J.KNOSYS.2022.109780
  2. Atanasova, T., Kasheva, M., Sulova, S., & Vasilev, J. (2010). Analysis of the possible application of Data Mining, Text Mining and Web Mining in business intelligent systems. The 33rd International Convention MIPRO, 1294–1297. https://doi.org/10.13140/2.1.1027.5840
  3. Awajan, I., Mohamad, M., & Al-Quran, A. (2021). Sentiment Analysis Technique and Neutrosophic Set Theory for Mining and Ranking Big Data from Online Reviews. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3067844
  4. Bâra, A., & Lungu, I. (2012). Improving Decision Support Systems with Data Mining Techniques”. In Advances in Data Mining Knowledge Discovery and Applications. https://doi.org/10.5772/47788
  5. Biswas, E., Karabulut, M. E., Pollock, L., & Vijay-Shanker, K. (2020). Achieving Reliable Sentiment Analysis in the Software Engineering Domain using BERT. Proceedings - 2020 IEEE International Conference on Software Maintenance and Evolution, ICSME 2020. https://doi.org/10.1109/ICSME46990.2020.00025
  6. Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2). https://doi.org/10.1109/MIS.2013.30
  7. Colón-Ruiz, C., & Segura-Bedmar, I. (2020). Comparing deep learning architectures for sentiment analysis on drug reviews. Journal of Biomedical Informatics, 110, 103539. https://doi.org/10.1016/J.JBI.2020.103539
  8. Cristescu, M. P., Mara, D. A., Nerișanu, R. A., & Culda, L. C. (2024). Leveraging Free Tools in Financial Sentiment Analysis. In C. Oprean-Stan (Ed.), Application of Novel Research Methods. The Study of Current Economic Phenomena. Peter Lang Verlag. https://doi.org/10.3726/B21691
  9. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://github.com/tensorflow/tensor2tensor
  10. HarishRao, M., ShashikumarD.RHarishRao, M., & D.R, S. (2017). Automatic Product Review Sentiment Analysis Using Vader and Feature Visulaization. International Journal of Computer Science Engineering and Information Technology Research, 7(4), 53–66. https://doi.org/10.24247/IJCSEITRAUG20178
  11. He, L., & Zheng, K. (2019). How do general-purpose sentiment analyzers perform when applied to health-related online social media data? Studies in Health Technology and Informatics, 264. https://doi.org/10.3233/SHTI190418
  12. Hutto, C. J., & Gilbert, E. (2014). VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014. https://doi.org/10.1609/icwsm.v8i1.14550
  13. Kotelnikova, A., Paschenko, D., Bochenina, K., & Kotelnikov, E. (2022). Lexicon-Based Methods vs. BERT for Text Sentiment Analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13217 LNCS. https://doi.org/10.1007/978-3-031-16500-9_7
  14. Kouadri, W. M., Benbernou, S., Ouziri, M., Palpanas, T., & Amor, I. Ben. (2022). SA-Q: Observing, Evaluating, and Enhancing the Quality of the Results of Sentiment Analysis Tools. Proc. VLDB Endow., 15, 3658–3661. https://doi.org/10.14778/3554821.3554868
  15. Liu, Y., Lu, J., Yang, J., & Mao, F. (2020). Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax. Mathematical Biosciences and Engineering, 17(6). https://doi.org/10.3934/MBE.2020398
  16. Li, X., Bing, L., Zhang, W., & Lam, W. (2019). Exploiting bert for end-to-end aspect-based sentiment analysis_. W-NUT@EMNLP 2019 - 5th Workshop on Noisy User-Generated Text, Proceedings. https://doi.org/10.18653/v1/d19-5505
  17. Loria, S. (2022). TextBlob: Simplified Text Processing — TextBlob 0.19.0 documentation. https://textblob.readthedocs.io/en/dev/
  18. Marfani, H., Hina, S., & Tabassum, H. (2022). Analysis of Learners’ Sentiments on MOOC Forums using Natural Language Processing Techniques. 3rd International Conference on Innovations in Computer Science and Software Engineering, ICONICS 2022. https://doi.org/10.1109/ICONICS56716.2022.10100401
  19. Mindoro, J. N., Malbog, M. A. F., Nipas, M. D. S., Susa, J. A. B., Acoba, A. G., & Gulmatico, J. S. (2022). Sentiment Analysis in Customer Experience in Philippine Courier Delivery Services using VADER Algorithm Thru Chatbot Interviews. ICPC2T 2022 - 2nd International Conference on Power, Control and Computing Technologies, Proceedings. https://doi.org/10.1109/ICPC2T53885.2022.9777007
  20. Moussa, M., Mohamed, E., & Haggag, M. (2018). A generic lexicon-based framework for sentiment analysis. International Journal of Computers and Applications, 42, 463–473. https://doi.org/10.1080/1206212X.2018.1483813
  21. Nassirtoussi, K. A., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653–7670. https://doi.org/10.1016/J.ESWA.2014.06.009
  22. Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
  23. Peng, R. D., & Matsui, E. (2016). The Art of Data Science: A Guide for Anyone who Works with Data. Lulu.com. https://books.google.ro/books?id=ZDH9DAEACAAJ
  24. Prasad, M. P. R. K., Jahnavi, M. S., Reddy, M. R. J., Rama, K. V., & Narendra, K. (2022). Sentiment Analysis on Reviews of E-commerce Sites Using BERT. IJFANS International Journal of Food and Nutritional Sciences, 11(12), 2024–2033. https://doi.org/10.48047/IJFANS/V11/I12/214
  25. Sayeed, M. S., Mohan, V., & Muthu, K. S. (2023). BERT: A Review of Applications in Sentiment Analysis. In HighTech and Innovation Journal (Vol. 4, Issue 2). https://doi.org/10.28991/HIJ-2023-04-02-015
  26. Stancu, A.-M. R., Pompiliu, C. M., & Stoyanova, M. (2020). Data Mining Algorithms for Knowledge Extraction. In S. L. Fotea, I. Ş. Fotea, & S. A. Văduva (Eds.), Challenges and Opportunities to Develop Organizations Through Creativity, Technology and Ethics (pp. 349–357). Springer International Publishing. https://doi.org/10.1007/978-3-030-43449-6_20
  27. Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to Fine-Tune BERT for Text Classification? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11856 LNAI, 194–206. https://doi.org/10.1007/978-3-030-32381-3_16
  28. Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. https://arxiv.org/pdf/1706.03762v7
  29. Venkit, P. N., Srinath, M., & Wilson, S. (2023). Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models. ArXiv, abs/2307.09209. https://doi.org/10.48550/ARXIV.2307.09209
  30. Vidya, K., & Janani, S. (2022). Analogy of Machine Learning Approaches and BERT for Sentiment Analysis. Journal of Information Technology and Digital World, 4(1), 52–60. https://doi.org/10.36548/jitdw.2022.1.006
  31. Wu, X., Lv, S., Zang, L., Han, J., & Hu, S. (2019). Conditional BERT Contextual Augmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11539 LNCS. https://doi.org/10.1007/978-3-030-22747-0_7
  32. Xu, H., Shu, L., Yu, P., & Liu, B. (2020). Understanding Pre-trained BERT for Aspect-based Sentiment Analysis. In D. Scott, N. Bel, & C. Zong (Eds.), Proceedings of the 28th International Conference on Computational Linguistics (pp. 244–250). International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.coling-main.21
  33. Yang, Z., Asyrofi, M. H., & Lo, D. (2021). BiasRV: uncovering biased sentiment predictions at runtime. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. https://doi.org/10.1145/3468264.3473117
Language: English
Page range: 19 - 40
Published on: May 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Dumitru Alexandru Mara, Lia Cornelia Culda, Marian Pompiliu Cristescu, Raluca Andreea Nerişanu, Radu-Anton Moldovan, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.