References
- Abdelrahman M., El-Sayed M., Jogaiah S., Burritt D.J., Tran L.-S.P. 2017. The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Reports 36(7): 1009–1025. DOI: 10.1007/s00299-017-2119-y.
- Ahmad S., Guo Y. 2019. Signal transduction in leaf senescence: progress and perspective. Plants 8(10); 405; 15 p. DOI: 10.3390/plants8100405.
- Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P. et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633): 653–657. DOI: 10.1126/science.1086391.
- Aloryi K.D., Jing H.-C., Dijkwel P.P. 2023. Comparison of leaf senescence regulation between distantly related plant species uncovers knowledge gaps and opportunities for plant improvement strategies. Environmental and Experimental Botany 214; 105474; 10 p. DOI: 10.1016/j.envexpbot.2023.105474.
- Aoyama S., Huarancca Reyes T., Guglielminetti L., Lu Y., Morita Y., Sato T., Yamaguchi Y. 2014. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant and Cell Physiology 55(2): 293–305. DOI: 10.1093/pcp/pcu002.
- Arce R.C., Carrillo N., Pierella Karlusich J.J. 2022. The chloroplast redox-responsive transcriptome of solanaceous plants reveals significant nuclear gene regulatory motifs associated to stress acclimation. Plant Molecular Biology 108(6): 513–530. DOI: 10.1007/s11103-022-01240-5.
- Argueso C.T., Hansen M., Kieber J.J. 2007. Regulation of ethylene biosynthesis. Journal of Plant Growth Regulation 26(2): 92–105. DOI: 10.1007/s00344-007-0013-5.
- Asensi-Fabado M.-A., Amtmann A., Perrella G. 2017. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. Biochimica et Biophysica Acta 1860(1): 106–122. DOI: 10.1016/j.bbagrm.2016.07.015.
- Asim M., Zhang Y., Sun Y., Guo M., Khan R., Wang X.L. et al. 2023. Leaf senescence attributes: The novel and emerging role of sugars as signaling molecules and the overlap of sugars and hormone signaling nodes. Critical Reviews in Biotechnology 43(7): 1092–1110. DOI: 10.1080/07388551.2022.2094215.
- Ay N., Clauß K., Barth O., Humbeck K. 2008. Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Plant Biology 10(s1): 121–135. DOI: 10.1111/j.1438-8677.2008.00092.x.
- Ay N., Irmler K., Fischer A., Uhlemann R., Reuter G., Hum-beck K. 2009. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. The Plant Journal 58(2): 333–346. DOI: 10.1111/j.0960-7412.2009.03782.x.
- Ay N., Janack B., Humbeck K. 2014. Epigenetic control of plant senescence and linked processes. Journal of Experimental Botany 65(14): 3875–3887. DOI: 10.1093/jxb/eru132.
- Baker A., Lin C.-C., Lett C., Karpinska B., Wright M.H., Foyer C.H. 2023. Catalase: A critical node in the regulation of cell fate. Free Radical Biology and Medicine 199: 56–66. DOI: 10.1016/j.freeradbiomed.2023.02.009.
- Balazadeh S., Kwasniewski M., Caldana C., Mehrnia M., Zanor M.I., Xue G.-P., Mueller-Roeber B. 2011. ORS1, an H₂O₂-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Molecular Plant 4(2): 346–360. DOI: 10.1093/mp/ssq080.
- Balazadeh S., Wu A., Mueller-Roeber B. 2010. Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signaling and Behavior 5(6): 733–735. DOI: 10.4161/psb.5.6.11694.
- Basit F., Khalid M., El-Keblawy A., Sheteiwy M.S., Sulieman S., Josko I., Zulfiqar F. 2024. Hypoxia stress: plant’s sensing, responses, and tolerance mechanisms. Environmental Science and Pollution Research 31(55): 63458–63472. DOI: 10.1007/s11356-024-35439-4.
- Berr A., Shafiq S., Shen W.-H. 2011. Histone modifications in transcriptional activation during plant development. Biochimica et Biophysica Acta 1809(10): 567–576. DOI: 10.1016/j.bbagrm.2011.07.001.
- Besseau S., Li J., Palva E.T. 2012. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany 63(7): 2667–2679. DOI: 10.1093/jxb/err450.
- Breeze E., Harrison E., McHattie S., Hughes L., Hickman R., Hill C. et al. 2011. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell 23(3): 873–894. DOI: 10.1105/tpc.111.083345.
- Brusslan J.A., Bonora G., Rus-Canterbury A.M., Tariq F., Jaroszewicz A., Pellegrini M. 2015. A genome-wide chronological study of gene expression and two his-tone modifications, H3K4me3 and H3K9ac, during developmental leaf senescence. Plant Physiology 168(4): 1246–1261. DOI: 10.1104/pp.114.252999.
- Buraschi F.B., Mollard F.P.O., Grimoldi A.A., Striker G.G. 2020. Eco-physiological traits related to recovery from complete submergence in the model legume Lotus japonicus. Plants 9(4); 538; 19 p. DOI: 10.3390/plants9040538.
- Cabusora C.C. 2024. Developing climate-resilient crops: adaptation to abiotic stress-affected areas. Technology in Agronomy 4; e005; 12 p. DOI: 10.48130/tia-0024-0002.
- Cao J., Liu H., Tan S., Li Z. 2023. Transcription factors-regulated leaf senescence: current knowledge, challenges, and approaches. International Journal of Molecular Sciences 24(11); 9245; 14 p. DOI: 10.3390/ijms24119245.
- Chan S.W.L., Henderson I.R., Jacobsen S.E. 2005. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics 6(5): 351–360. DOI: 10.1038/nrg1601.
- Chen J., Nolan T.M., Ye H., Zhang M., Tong H., Xin P. et al. 2017. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. The Plant Cell 29(6): 1425–1439. DOI: 10.1105/tpc.17.00364.
- Chen Q., Yan J., Tong T., Zhao P., Wang S., Zhou N. et al. 2023. ANAC087 transcription factor positively regulates age‐dependent leaf senescence through modulating the expression of multiple target genes in Arabidopsis. Journal of Integrative Plant Biology 65(4): 967–984. DOI: 10.1111/jipb.13434.
- Chen X., Liu J., Lin G., Wang A., Wang Z., Lu G. 2013. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Reports 32(10): 1589–1599. DOI: 10.1007/s00299-013-1469-3.
- Chen X., Lu L., Mayer K.S., Scalf M., Qian S., Lomax A. et al. 2016. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. eLife 5; e17214; 23 p. DOI: 10.7554/eLife.17214.
- Chen Y., Feng P., Tang B., Hu Z., Xie Q., Zhou S., Chen G. 2022. The AP2/ERF transcription factor SlERF.F5 functions in leaf senescence in tomato. Plant Cell Reports 41(5): 1181–1195. DOI: 10.1007/s00299-022-02846-1.
- Chien Y.-C., Yoon G.M. 2024. Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress. BioEssays 46(6); 2400043; 11 p. DOI: 10.1002/bies.202400043.
- Chodavarapu R.K., Feng S., Bernatavichute Y.V., Chen P.Y., Stroud H., Yu Y. et al. 2010. Relationship between nucleosome positioning and DNA methylation. Nature 466(7304): 388–392. DOI: 10.1038/nature09147.
- Choi Y., Gehring M., Johnson L., Hannon M., Harada J.J., Goldberg R.B. et al. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110(1): 33–42. DOI: 10.1016/S0092-8674(02)00807-3.
- Ciolkowski I., Wanke D., Birkenbihl R.P., Somssich I.E. 2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology 68(1): 81–92. DOI: 10.1007/s11103-008-9353-1.
- Cui X., Lu F., Li Y., Xue Y., Kang Y., Zhang S. et al. 2013. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiology 162(2): 897–906. DOI: 10.1104/pp.112.213009.
- Dalle Carbonare L., Jiménez J.d.l.C., Lichtenauer S., van Veen H. 2023. Plant responses to limited aeration: Advances and future challenges. Plant Direct 7(3); e488; 14 p. DOI: 10.1002/pld3.488.
- Deal R.B., Henikoff S. 2011. Histone variants and modifications in plant gene regulation. Current Opinion in Plant Biology 14(2): 116–122. DOI: 10.1016/j.pbi.2010.11.005.
- Dkhar J., Paul A. 2023. Transcription factors and their role in leaf senescence. In: Srivastava V., Mishra S., Mehrotra S., Upadhyay S.K. (Eds.), Plant Transcription Factors. Academic Press, pp. 93–138. DOI: 10.1016/b978-0-323-90613-5.00002-9.
- Fan H., Quan S., Ye Q., Zhang L., Liu W., Zhu N. et al. 2023. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. Molecular Plant 16(4): 756–774. DOI: 10.1016/j.molp.2023.03.006.
- Fan Z.-Q., Tan X.-L., Shan W., Kuang J.-F., Lu W.-J., Chen J.-Y. 2017. BrWRKY65, a WRKY transcription factor, is involved in regulating three leaf senescence-associated genes in Chinese flowering cabbage. International Journal of Molecular Sciences 18(6); 1228; 14 p. DOI: 10.3390/ijms18061228.
- Fuertes-Aguilar J., Matilla A.J. 2024. Transcriptional control of seed life: New insights into the role of the NAC family. International Journal of Molecular Sciences 25(10); 5369; 41 p. DOI: 10.3390/ijms25105369.
- Fukao T., Yeung E., Bailey-Serres J. 2012. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiology 160(4): 1795–1807. DOI: 10.1104/pp.112.207738.
- Gad A.G., Habiba, Zheng X., Miao Y. 2021. Low light/darkness as stressors of multifactor-induced senescence in rice plants. International Journal Molecular Sciences 22(8); 3936; 13 p. DOI: 10.3390/ijms22083936.
- Garg R., Mahato H., Choudhury U., Thakur R.S., Debnath P., Ansari N.G. et al. 2024. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses. Plant Biotechnology Journal 22(4): 848–862. DOI: 10.1111/pbi.14228.
- Ge M., Tang Y., Guan Y., Lv M., Zhou C., Ma H., Lv J. 2024. TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC Plant Biology 24; 27; 18 p. DOI: 10.1186/s12870-023-04709-7. Gehring M., Reik W., Henikoff S. 2009. DNA demethylation by DNA repair. Trends in Genetics 25(2): 82–90. DOI: 10.1016/j.tig.2008.12.001.
- Gibney E.R., Nolan C.M. 2010. Epigenetics and gene expression. Heredity 105(1): 4–13. DOI: 10.1038/hdy.2010.54.
- Giuntoli B., Perata P. 2018. Group VII ethylene response factors in Arabidopsis: Regulation and physiological roles. Plant Physiology 176(2): 1143–1155. DOI: 10.1104/pp.17.01225.
- Graham L.E., Schippers J.H.M., Dijkwel P.P., Wagstaff C. 2012. Ethylene and senescence processes. Annual Plant Reviews 44: 305–341. DOI: 10.1002/9781118223086.ch12.
- Guo Y., Gan S.-S. 2012. Convergence and divergence in gene expression profiles induced by leaf senescence and senescence-promoting hormonal, pathological and environmental stress treatments. Plant, Cell and Environment 35(3): 644–655. DOI: 10.1111/j.1365-3040.2011.02442.x.
- Guo Y., Ren G., Zhang K., Li Z., Miao Y., Guo H. 2021. Leaf senescence: progression, regulation, and application. Molecular Horticulture 1; 5; 25 p. DOI: 10.1186/s43897-021-00006-9.
- Han K., Zhao Y., Sun Y., Li Y. 2023. NACs, generalist in plant life. Plant Biotechnology Journal 21(12): 2433–2457. DOI: 10.1111/pbi.14161.
- Han S.-K., Wu M.-F., Cui S., Wagner D. 2015. Roles and activities of chromatin remodeling ATPases in plants. The Plant Journal 83(1): 62–77. DOI: 10.1111/tpj.12877.
- Havé M., Balliau T., Cottyn-Boitte B., Dérond E., Cueff G., Soulay F. et al. 2018. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? Journal of Experimental Botany 69(6): 1369–1385. DOI: 10.1093/jxb/erx482.
- He L., Wu W., Zinta G., Yang L., Wang D., Liu R. et al. 2018. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nature Communications 9; 460; 11 p. DOI: 10.1038/s41467-018-02839-3.
- Hickman R., Hill C., Penfold C.A., Breeze E., Bowden L., Moore J.D. et al. 2013. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. The Plant Journal 75(1): 26–39. DOI: 10.1111/tpj.12194.
- Hillwig M.S., Contento A.L., Meyer A., Ebany D., Bassham D.C., MacIntosh G.C. 2011. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proceedings of the National Academy of Sciences 108(3): 1093–1098. DOI: 10.1073/pnas.1009809108.
- Hinckley W.E., Keymanesh K., Cordova J.A., Brusslan J.A. 2019. The HAC1 histone acetyltransferase promotes leaf senescence and regulates the expression of ERF022. Plant Direct 3(8); e00159; 10 p. DOI: 10.1002/pld3.159.
- Hu Y., Lu Y., Zhao Y., Zhou D.-X. 2019. Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress. Frontiers in Plant Science 10; 1236; 10 p. DOI: 10.3389/fpls.2019.01236.
- Huang D., Lan W., Li D., Deng B., Lin W., Ren Y., Miao Y. 2018. WHIRLY1 occupancy affects histone lysine modification and WRKY53 transcription in Arabidopsis developmental manner. Frontiers in Plant Science 9; 1503; 13 p. DOI: 10.3389/fpls.2018.01503.
- Huang J., Han R., Ji F., Yu Y., Wang R., Hai Z. et al. 2022a. Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips. Journal of Hazardous Materials 425; 127964. DOI: 10.1016/j.jhazmat.2021.127964.
- Huang P., Li Z., Guo H. 2022b. New advances in the regulation of leaf senescence by classical and peptide hormones. Frontiers in Plant Science 13; 923136; 17 p. DOI: 10.3389/fpls.2022.923136.
- Huang S., Zhu K., Chen Y., Wang X., Wang Y. 2021. Gerbera POE1 (GhPOE1) is involved in leaf senescence in Arabidopsis. South African Journal of Botany 143: 33–41. DOI: 10.1016/j.sajb.2021.06.039.
- Humbeck K. 2013. Epigenetic and small RNA regulation of senescence. Plant Molecular Biology 82(6): 529–537. DOI: 10.1007/s11103-012-0005-0.
- Inamdar N.M., Ehrlich K.C., Ehrlich M. 1991. CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Molecular Biology 17(1): 111–123. DOI: 10.1007/bf00036811.
- Izumi M., Ishida H., Nakamura S., Hidema J. 2017. Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell 29(2): 377–394. DOI: 10.1105/tpc.16.00637.
- Jan S., Abbas N., Ashraf M., Ahmad P. 2019. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma 256(2): 313–329. DOI: 10.1007/s00709-018-1310-5.
- Jia M., Liu X., Xue H., Wu Y., Shi L., Wang R. et al. 2019. Noncanonical ATG8–ABS3 interaction controls senescence in plants. Nature Plants 5(2): 212–224. DOI: 10.1038/s41477-018-0348-x.
- Jing H.-C., Schippers J.H.M., Hille J., Dijkwel P.P. 2005. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany 56(421): 2915–2923. DOI: 10.1093/jxb/eri287.
- Ju C., Yoon G.M., Shemansky J.M., Lin D.Y., Ying Z.I., Chang J. et al. 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences 109(47): 19486–19491. DOI: 10.1073/pnas.1214848109.
- Kalairaj A., Rajendran S., Panda R.C., Senthilvelan T. 2024. A study on waterlogging tolerance in sugarcane: a comprehensive review. Molecular Biology Reports 51; 747; 15 p. DOI: 10.1007/s11033-024-09679-z.
- Kant S., Burch D., Badenhorst P., Palanisamy R., Mason J., Spangenberg G. 2015. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PLoS One 10(1); e0116349; 18 p. DOI: 10.1371/journal.pone.0116349.
- Khan S., Alvi A.F., Khan N.A. 2024. Role of Ethylene in the Regulation of Plant Developmental Processes. Stresses 4(1): 28–53. DOI: 10.3390/stresses4010003.
- Kikuchi Y., Nakamura S., Woodson J.D., Ishida H., Ling Q., Hidema J. et al. 2020. Chloroplast autophagy and ubiquitination combine to manage oxidative damage and starvation responses. Plant Physiology 183(4): 1531–1544. DOI: 10.1104/pp.20.00237.
- Kim H.J., Hong S.H., Kim Y.W., Lee I.H., Jun J.H., Phee B.-K. et al. 2014. Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. Journal of Experimental Botany 65(14): 4023–4036. DOI: 10.1093/jxb/eru112.
- Kim J.H., Woo H.R., Kim J., Lim P.O., Lee I.C., Choi S.H. et al. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323(5917): 1053–1057. DOI: 10.1126/science.1166386.
- Kim M., Ohr H., Lee J.W., Hyun Y., Fischer R.L., Choi Y. 2008. Temporal and spatial downregulation of Arabidopsis MET1 activity results in global DNA hypomethylation and developmental defects. Molecules and Cells 26(6): 611–615. DOI: 10.1016/S1016-8478(23)14044-1.
- Koyama T. 2014. The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Frontiers in Plant Science 5; 650; 8 p. DOI: 10.3389/fpls.2014.00650.
- Koyama T., Nii H., Mitsuda N., Ohta M., Kitajima S., Ohme-Takagi M., Sato F. 2013. A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiology 162(2): 991–1005. DOI: 10.1104/pp.113.218115.
- Krieger‐Liszkay A., Krupinska K., Shimakawa G. 2019. The impact of photosynthesis on initiation of leaf senescence. Physiologia Plantarum 166(1): 148–164. DOI: 10.1111/ppl.12921.
- Kusch T., Workman J.L. 2007. Histone variants and complexes involved in their exchange. Chromatin and Disease. Subcellular Biochemistry 41: 91–110. DOI: 10.1007/1-4020-5466-1.
- Lan W., Miao Y. 2019. New aspects of HECT-E3 ligases in cell senescence and cell death of plants. Plants 8(11); 483; 13 p. DOI: 10.3390/plants8110483. Latif S., Shah T., Nawaz R., Munsif F., Ali M., ur Rehman M.,
- Khan H. 2020. Programmed cell death and drought stress signaling. In: Hasanuzzaman M., Tanveer M. (Eds.), Salt and Drought Stress Tolerance in Plants. Signaling and communication in plants. Springer, pp. 211–229. DOI: 10.1007/978-3-030-40277-8_8.
- Lee S., Seo P.J., Lee H.-J., Park C.-M. 2012. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought‐induced leaf senescence in Arabidopsis. The Plant Journal 70: 831–844. DOI: 10.1111/j.1365-313x.2012.04932.x.
- Li C., Wu X., Wang P., Wang H., Wang L., Sun F. et al. 2024. Genome-wide association study of image-based trait reveals the genetic architecture of dark-induced leaf senescence in rice. Journal of Experimental Botany 76(2): 331–345. DOI: 10.1093/jxb/erae391.
- Li C., Zhang J., Zhang Q., Dong A., Wu Q., Zhu X., Zhu X. 2022. Genome-wide identification and analysis of the NAC transcription factor gene family in garden asparagus (Asparagus officinalis). Genes 13(6); 976; 20 p. DOI: 10.3390/genes13060976.
- Li F., Chung T., Vierstra R.D. 2014. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. The Plant Cell 26(2): 788–807. DOI: 10.1105/tpc.113.120014.
- Li H., Freeling M., Lisch D. 2010. Epigenetic reprogramming during vegetative phase change in maize. Proceedings of the National Academy of Sciences 107(51): 22184–22189. DOI: 10.1073/pnas.1016884108.
- Li N., Bo C., Zhang Y., Wang L. 2021. PHYTO-CHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. Journal of Experimental Botany 72(12): 4577–4589. DOI: 10.1093/jxb/erab158.
- Li Q.-F., Wang C., Jiang L., Li S., Sun S.S.M., He J.-X. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5(244); ra72; 11 p. DOI: 10.1126/scisignal.2002908.
- Li Z., Peng J., Wen X., Guo H. 2013. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant Cell 25(9): 3311–3328. DOI: 10.1105/tpc.113.113340.
- Li Z., Zhao T., Liu J., Li H., Liu B. 2023. Shade-induced leaf senescence in plants. Plants 12(7); 1550; 17 p. DOI: 10.3390/plants12071550.
- Liang C., Wang Y., Zhu Y., Tang J., Hu B., Liu L. et al. 2014. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proceedings of the National Academy of Sciences 111(27): 10013–10018. DOI: 10.1073/pnas.1321568111.
- Liebsch D., Keech O. 2016. Dark‐induced leaf senescence: new insights into a complex light‐dependent regulatory pathway. New Phytologist 212(3): 563–570. DOI: 10.1111/nph.14217.
- Lim P.O., Kim Y., Breeze E., Koo J.C., Woo H.R., Ryu J.S. et al. 2007. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. The Plant Journal 52(6): 1140–1153. DOI: 10.1111/j.1365-313x.2007.03317.x.
- Lim P.O., Lee I.C., Kim J., Kim H.J., Ryu J.S., Woo H.R., Nam H.G. 2010. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. Journal of Experimental Botany 61(5): 1419–1430. DOI: 10.1093/jxb/erq010.
- Lin J.F., Wu S.H. 2004. Molecular events in senescing Arabidopsis leaves. The Plant Journal 39(4): 612–628. DOI: 10.1111/j.1365-313x.2004.02160.x.
- Lin Y.-L., Sung S.-C., Tsai H.-L., Yu T.-T., Radjacommare R., Usharani R. et al. 2011. The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. The Plant Cell 23(7): 2754–2773. DOI: 10.1105/tpc.111.086702.
- Lindemose S., Jensen M.K., Van de Velde J., O’Shea C., Heyndrickx K.S., Workman C.T. et al. 2014. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Research 42(12): 7681–7693. DOI: 10.1093/nar/gku502.
- Liu F., Xi M., Liu T., Wu X., Ju L., Wang D. 2024. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops 1; 100005; 11 p. DOI: 10.1016/j.ncrops.2023.11.003.
- Liu K., Jing T., Wang Y., Ai X., Bi H. 2022. Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI. Environmental and Experimental Botany 200; 104915. DOI: 10.1016/j.envexpbot.2022.104915.
- Liu P., Zhang S., Zhou B., Luo X., Zhou X.F., Cai B. et al. 2019. The histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis. The Plant Cell 31(2): 430–443. DOI: 10.1105/tpc.18.00693.
- Loreti E., Valeri M.C., Novi G., Perata P. 2018. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiology 176(2): 1286–1298. DOI: 10.1104/pp.17.01002.
- Luo Y.Y., Gianfagna T.J., Janes H.W., Huang B., Wang Z., Xing J. 2005. Expression of the ipt gene with the AGPase S1 promoter in tomato results in un-branched roots and delayed leaf senescence. Plant Growth Regulation 47(1): 47–57. DOI: 10.1007/s10725-005-8647-4.
- Ma X., Zhang Y., Turečková V., Xue G.-P., Fernie A.R., Mueller-Roeber B., Balazadeh S. 2018. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato. Plant Physiology 177(3): 1286–1302. DOI: 10.1104/pp.18.00292.
- Mandal M., Sarkar M., Khan A., Biswas M., Masi A., Rakwal R. et al. 2022. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants– maintenance of structural individuality and functional blend. Advances in Redox Research 5; 100039; 21 p. DOI: 10.1016/j.arres.2022.100039.
- Mao C., Lu S., Lv B., Zhang B., Shen J., He J. et al. 2017. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology 174(3): 1747–1763. DOI: 10.1104/pp.17.00542.
- Marshall R.S., Li F., Gemperline D.C., Book A.J., Vierstra R.D. 2015. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Molecular Cell 58(6): 1053–1066. DOI: 10.1016/j.molcel.2015.04.023.
- Masclaux-Daubresse C., Clément G., Anne P., Routaboul J.-M., Guiboileau A., Soulay F. et al. 2014. Stitching together the multiple dimensions of autophagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis. The Plant Cell 26(5): 1857–1877. DOI: 10.1105/tpc.114.124677.
- Mathibela E.O. 2021. The impact of delayed nodule senescence by tissue-specific cysteine protease inhibitor expression in soybean [Glycine max (L.) Merr.] development and response to abiotic stress. M.Sc. thesis, University of Pretoria, South Africa, 82 p. http://hdl.handle.net/2263/81235
- Meng Y., Li H., Wang Q., Liu B., Lin C. 2013. Blue light– dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. The Plant Cell 25(11): 4405–4420. DOI: 10.1105/tpc.113.116590.
- Miao Y., Jiang J., Ren Y., Zhao Z. 2013. The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiology 163(2): 746–756. DOI: 10.1104/pp.113.223412.
- Miao Y., Laun T., Zimmermann P., Zentgraf U. 2004. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology 55(6): 853–867. DOI: 10.1007/s11103-004-2142-6.
- Miao Y., Zentgraf U. 2007. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. The Plant Cell 19(3): 819–830. DOI: 10.1105/tpc.106.042705.
- Miao Y., Zentgraf U. 2010. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. The Plant Journal 63(2): 179–188. DOI: 10.1111/j.1365-313x.2010.04233.x.
- Michaeli S., Honig A., Levanony H., Peled-Zehavi H., Galili G. 2014. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. The Plant Cell 26(10): 4084–4101. DOI: 10.1105/tpc.114.129999.
- Minina E.A., Moschou P.N., Vetukuri R.R., Sanchez-Vera V., Cardoso C., Liu Q. et al. 2018. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany 69(6): 1415–1432. DOI: 10.1093/jxb/ery010.
- Miryeganeh M. 2021. Plants’ epigenetic mechanisms and abiotic stress. Genes 12(8); 1106; 17 p. DOI: 10.3390/genes12081106.
- Mitsuda N., Ohme-Takagi M. 2009. Functional analysis of transcription factors in Arabidopsis. Plant and Cell Physiology 50(7): 1232–1248. DOI: 10.1093/pcp/pcp075.
- Mittler R., Zandalinas S.I., Fichman Y., Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23(10): 663–679. DOI: 10.1038/s41580-022-00499-2.
- Murray S.L., Ingle R.A., Petersen L.N., Denby K.J. 2007. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Molecular Plant-Microbe Interactions 20(11): 1431–1438. DOI: 10.1094/mpmi-20-11-1431.
- Muzzaffar S., Rather S.A., Masoodi F.A. 2022. Ethylene signaling during leaf senescence. In: Aftab T., Hakeem K.R. (Eds.), Plant abiotic stress physiology. Volume 2: Molecular advancements. Apple Academic Press, pp. 183–215. DOI: 10.1201/9781003180579.
- Nadarajah K.K. 2020. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences 21(15); 5208; 29 p. DOI: 10.3390/ijms21155208.
- Omidi M., Khandan-Mirkohi A., Kafi M., Zamani Z., Ajdanian L., Babaei M. 2022. Biochemical and molecular responses of Rosa damascena Mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology 22; 373; 20 p. DOI: 10.1186/s12870-022-03754-y.
- Ostrowska-Mazurek A., Kasprzak P., Kubala S., Zaborowska M., Sobieszczuk-Nowicka E. 2020. Epi-genetic landmarks of leaf senescence and crop improvement. International Journal of Molecular Sciences 21(14): 5125. DOI: 10.3390/ijms21145125.
- Oyebamiji Y.O., Adigun B.A., Shamsudin N.A.A., Ikmal A.M., Salisu M.A., Malike F.A., Lateef A.A. 2024. Recent advancements in mitigating abiotic stresses in crops. Horticulturae 10(2); 156; 37 p. DOI: 10.3390/horticulturae10020156.
- Park S.-H., Jeong J.S., Seo J.S., Park B.S., Chua N.-H. 2019. Arabidopsis ubiquitin-specific proteases UBP12 and UBP13 shape ORE1 levels during leaf senescence induced by nitrogen deficiency. New Phytologist 223(3): 1447–1460. DOI: 10.1111/nph.15879.
- Peerzada Y.Y., Iqbal M. 2021. Leaf senescence and ethylene signaling. In: Aftab T., Hakeem K.R. (Eds.), Plant Growth Regulators. Springer, pp. 153–171. DOI: 10.1007/978-3-030-61153-8_7.
- Popov V.N., Syromyatnikov M.Y., Franceschi C., Moskalev A.A., Krutovsky K.V. 2022. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Research Reviews 77; 101601; 16 p. DOI: 10.1016/j.arr.2022.101601.
- Poret M., Chandrasekar B., van Der Hoorn R.A.L., Avice J.-C. 2016. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape. Plant Science 246: 139–153. DOI: 10.1016/j.plantsci.2016.02.011.
- Potuschak T., Lechner E., Parmentier Y., Yanagisawa S., Grava S., Koncz C., Genschik P. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115(6): 679–689. DOI: 10.1016/s0092-8674(03)00968-1.
- Rajani K., Kumar S., Kumar R.R., Ranjan T., Singh R.K. 2018. Molecular approaches for assessing the impact of drought stress on seed – A review. Progressive Research – An International Journal 13(Special Issue): 649–657.
- Ramaswamy M., Narayanan J., Manickavachagam G., Athiappan S., Arun M., Gomathi R., Ram B. 2017. Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize, and Arabidopsis for prediction of stress associated NAC genes. Agri Gene 3: 1–11. DOI: 10.1016/j.aggene.2016.10.003.
- Rauf M., Arif M., Dortay H., Matallana-Ramírez L.P., Waters M.T., Nam H.G. et al. 2013. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Reports 14(4): 382–388. DOI: 10.1038/embor.2013.24.
- Ren Y., Li Y., Jiang Y., Wu B., Miao Y. 2017. Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis. Molecular Plant 10(5): 749–763. DOI: 10.1016/j.molp.2017.03.011.
- Rinerson C.I., Scully E.D., Palmer N.A., Donze-Reiner T., Rabara R.C., Tripathi P. et al. 2015. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 16; 912; 17 p. DOI: 10.1186/s12864-015-2057-4.
- Robatzek S., Somssich I.E. 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes and Development 16(9): 1139–1149. DOI: 10.1101/gad.222702.
- Rutowicz K., Puzio M., Halibart-Puzio J., Lirski M., Kotliński M., Kroteń M.A. et al. 2015. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiology 169(3): 2080–2101. DOI: 10.1104/pp.15.00493.
- dos Santos T.B., Ribas A.F., de Souza S.G.H., Budzinski I.G.F., Domingues D.S. 2022. Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses 2(1): 113–135. DOI: 10.3390/stresses2010009.
- Sarwat M. 2017. Leaf senescence in plants: Nutrient remobilization and gene regulation. In: Sarwat M., Ahmad A., Abdin M., Ibrahim M.M. (Eds.), Stress signaling in Plants: Genomics and Proteomics Perspective, vol 2. Springer, pp. 301–316. DOI: 10.1007/978-3-319-42183-4_13.
- Sato H., Mizoi J., Shinozaki K., Yamaguchi‐Shinozaki K. 2024. Complex plant responses to drought and heat stress under climate change. The Plant Journal 117(6): 1873–1892. DOI: 10.1111/tpj.16612.
- Scarpeci T.E., Zanor M.I., Mueller-Roeber B., Valle E.M. 2013. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Molecular Biology 83(3): 265–277. DOI: 10.1007/s11103-013-0090-8.
- Schreiber A., Peter M. 2014. Substrate recognition in selective autophagy and the ubiquitin–proteasome system. Biochimica et Biophysica Acta 1843(1): 163–181. DOI: 10.1016/j.bbamcr.2013.03.019.
- Seltmann M.A., Hussels W., Berger S. 2010. Jasmonates during senescence: Signals or products of metabolism? Plant Signaling and Behavior 5(11): 1493–1496. DOI: 10.4161/psb.5.11.13644.
- Sharabi-Schwager M., Lers A., Samach A., Guy C.L., Porat R. 2010. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. Journal of Experimental Botany 61(1): 261–273. DOI: 10.1093/jxb/erp300.
- Shibata M., Oikawa K., Yoshimoto K., Kondo M., Mano S., Yamada K. et al. 2013. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. The Plant Cell 25(12): 4967–4983. DOI: 10.1105/tpc.113.116947.
- Shu K., Yang W. 2017. E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant and Cell Physiology 58(9): 1461–1476. DOI: 10.1093/pcp/pcx071.
- Shu L., Li L., Jiang Y.-Q., Yan J. 2024. Advances in membrane-tethered NAC transcription factors in plants. Plant Science 342; 112034; 10 p. DOI: 10.1016/j.plantsci.2024.112034.
- Song Y., Yang C., Gao S., Zhang W., Li L., Kuai B. 2014. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Molecular Plant 7(12): 1776–1787. DOI: 10.1093/mp/ssu109.
- Swartzberg D., Dai N., Gan S., Amasino R., Granot D. 2006. Effects of cytokinin production under two SAG promoters on senescence and development of tomato plants. Plant Biology 8(5): 579–586. DOI: 10.1055/s-2006-924240.
- Szechyńska-Hebda M., Ghalami R.Z., Kamran M., Van Breusegem F., Karpiński S. 2022. To be or not to be? Are reactive oxygen species, antioxidants, and stress signaling universal determinants of life or death? Cells 11(24); 4105; 32 p. DOI: 10.3390/cells11244105.
- Tan S., Sha Y., Sun L., Li Z. 2023. Abiotic stress-induced leaf senescence: Regulatory mechanisms and application. International Journal of Molecular Sciences 24(15); 11996; 17 p. DOI: 10.3390/ijms241511996.
- Trejo-Arellano M.S., Mehdi S., de Jonge J., Dvorák Tomastíková E., Köhler C., Hennig L. 2020. Dark-induced senescence causes localized changes in DNA methylation. Plant Physiology 182(2): 949–961. DOI: 10.1104/pp.19.01154.
- Ueda M., Seki M. 2020. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiology 182(1): 15–26. DOI: 10.1104/pp.19.00988.
- Upadhyay R.K., Gupta A., Ranjan S., Singh R., Pathre U.V., Nath P., Sane A.P. 2014. The EAR motif controls the early flowering and senescence phenotype mediated by over-expression of SlERF36 and is partly responsible for changes in stomatal density and photosynthesis. PLoS One 9(7); e101995; 9 p. DOI: 10.1371/journal.pone.0101995.
- Upadhyay R.K., Soni D.K., Singh R., Dwivedi U.N., Pathre U.V., Nath P., Sane A.P. 2013. SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. Journal of Experimental Botany 64(11): 3237–3247. DOI: 10.1093/jxb/ert162.
- van Veen H., Triozzi P.M., Loreti E. 2025. Metabolic strategies in hypoxic plants. Plant Physiology 197(1); kiae564; 13 p. DOI: 10.1093/plphys/kiae564.
- Vanyushin B.F., Ashapkin V.V. 2011. DNA methylation in higher plants: past, present and future. Biochimica et Biophysica Acta 1809(8): 360–368. DOI: 10.1016/j.bbagrm.2011.04.006.
- Vatov E., Zentgraf U., Ludewig U. 2022. Moderate DNA methylation changes associated with nitrogen remobilization and leaf senescence in Arabidopsis. Journal of Experimental Botany 73(14): 4733–4752. DOI: 10.1093/jxb/erac167.
- Velasco-Arroyo B., Diaz-Mendoza M., Gandullo J., Gonzalez-Melendi P., Santamaria M.E., Dominguez-Figueroa J.D. et al. 2016. HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses. Journal of Experimental Botany 67(14): 4297–4310. DOI: 10.1093/jxb/erw212.
- Vierstra R.D. 2009. The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology 10(6): 385–397. DOI: 10.1038/nrm2688.
- Vogelmann K., Drechsel G., Bergler J., Subert C., Philippar K., Soll J. et al. 2012. Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. Plant Physiology 159(4): 1477–1487. DOI: 10.1104/pp.112.196220.
- Wahab A., Abdi G., Saleem M.H., Ali B., Ullah S., Shah W. et al. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11(13); 1620; 27 p. DOI: 10.3390/plants11131620.
- Wang H., Liu G., Li C., Powell A.L.T., Reid M.S., Zhang Z., Jiang C.-Z. 2013. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. Molecular Plant Pathology 14(5): 453–469. DOI: 10.1111/mpp.12017.
- Wang H., Schippers J.H.M. 2019. The role and regulation of autophagy and the proteasome during aging and senescence in plants. Genes 10(4); 267; 23 p. DOI: 10.3390/genes10040267.
- Wang P., Liu W.-C., Han C., Wang S., Bai M.-Y., Song C.-P. 2024. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology 66(3): 330–367. DOI: 10.1111/jipb.13601.
- Wang Q. 2024. Study on the expression regulation of the CTR1 gene in the ethylene signaling pathway. Biochemical and Biophysical Research Communications 739; 150590; 6 p. DOI: 10.1016/j.bbrc.2024.150590.
- Wang Q., Li X., Guo C., Wen L., Deng Z., Zhang Z. et al. 2023. Senescence-related receptor kinase 1 functions downstream of WRKY53 in regulating leaf senescence in Arabidopsis. Journal of Experimental Botany 74(17): 5140–5152. DOI: 10.1093/jxb/erad240.
- Wang X., Gao J., Gao S., Song Y., Yang Z., Kuai B. 2019. The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis. PLoS Genetics 15(4); e1008068; 24 p. DOI: 10.1371/journal.pgen.1008068.
- Wang Z., Gao M., Li Y., Zhang J., Su H., Cao M. et al. 2022. The transcription factor SlWRKY37 positively regulates jasmonic acid- and dark-induced leaf senescence in tomato. Journal of Experimental Botany 73(18): 6207–6225. DOI: 10.1093/jxb/erac258.
- Willems P., Horne A., Van Parys T., Goormachtig S., De Smet I., Botzki A. et al. 2019. The Plant PTM Viewer, a central resource for exploring plant protein modifications. The Plant Journal 99(4): 752–762. DOI: 10.1111/tpj.14345.
- Woo H.R., Chung K.M., Park J.-H., Oh S.A., Ahn T., Hong S.H. et al. 2001. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. The Plant Cell 13(8): 1779–1790. DOI: 10.1105/TPC.010061.
- Woo H.R., Kim J.H., Kim J., Kim J., Lee U., Song I.-J. et al. 2010. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany 61(14): 3947–3957. DOI: 10.1093/jxb/erq206.
- Xiao D., Cui Y., Xu F., Xu X., Gao G., Wang Y. et al. 2015. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE directly interacts with the cytoplasmic domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and negatively regulates leaf senescence in Arabidopsis. Plant Physiology 169(2): 1275–1291. DOI: 10.1104/pp.15.01112.
- Xiao X.O., Zeng Y.M., Cao B.H., Lei J.J., Chen Q.H., Meng C.M., Cheng Y.J. 2017. PSAG12-IPT overexpression in eggplant delays leaf senescence and induces abiotic stress tolerance. The Journal of Horticultural Science and Biotechnology 92(4): 349–357. DOI: 10.1080/14620316.2017.1287529.
- Xu Y., Cheng J., Hu H., Yan L., Jia J., Wu B. 2024. Genome-wide identification of NAC family genes in oat and functional characterization of AsNAC109 in abiotic stress tolerance. Plants 13(7); 1017; 16 p. DOI: 10.3390/plants13071017.
- Yang X., Srivastava R., Howell S.H., Bassham D.C. 2016. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. The Plant Journal 85(1): 83–95. DOI: 10.1111/tpj.13091.
- Yolcu S., Li X., Li S., Kim Y.J. 2018. Beyond the genetic code in leaf senescence. Journal of Experimental Botany 69(4): 801–810. DOI: 10.1093/jxb/erx401. Yuan L.-B., Chen M.-X., Wang L.-N., Sasidharan R.,
- Voesenek L.A.C.J., Xiao S. 2023. Multi‐stress resilience in plants recovering from submergence. Plant Biotechnology Journal 21(3): 466–481. DOI: 10.1111/pbi.13944.
- Zentgraf U. 2007. Oxidative stress and leaf senescence. Senescence Processes in Plants. Annual Plant Reviews 26: 69–86. DOI: 10.1002/9780470988855.ch4.
- Zentgraf U., Laun T., Miao Y. 2010. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. European Journal of Cell Biology 89(2–3): 133–137. DOI: 10.1016/j.ejcb.2009.10.014.
- Zhang H., Zhao M., Song Q., Zhao L., Wang G., Zhou C. 2016. Identification and function analyses of senescence-associated WRKYs in wheat. Biochemical and Biophysical Research Communications 474(4): 761–767. DOI: 10.1016/j.bbrc.2016.05.034.
- Zhang K., Gan S.-S. 2012. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiology 158(2): 961–969. DOI: 10.1104/pp.111.190876.
- Zhang X., Ju H.-W., Chung M.-S., Huang P., Ahn S.-J., Kim C.S. 2011. The R-R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant and Cell Physiology 52(1): 138–148. DOI: 10.1093/pcp/pcq180.
- Zhao W., Zhao H., Wang H., He Y. 2022. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. Frontiers in Plant Science 13; 1044500; 12 p. DOI: 10.3389/fpls.2022.1044500.
- Zhou C., Cai Z., Guo Y., Gan S. 2009. An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiology 150(1): 167–177. DOI: 10.1104/pp.108.133439.
- Zhou H., Zhao J., Cai J., Patil S.B. 2017. UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. Plant Molecular Biology 94(6): 565–576. DOI: 10.1007/s11103-017-0633-5.
- Zhou J., Lu D., Xu G., Finlayson S.A., He P., Shan L. 2015. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. Journal of Experimental Botany 66(11): 3353–3366. DOI: 10.1093/jxb/erv148.
- Zhou X., Jiang Y., Yu D. 2011. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecules and Cells 31(4): 303–313. DOI: 10.1007/s10059-011-0047-1.
- Zhu Z., An F., Feng Y., Li P., Xue L., A M. et al. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences 108(30): 12539–12544. DOI: 10.1073/pnas.1103959108.
- Zwack P.J., Robinson B.R., Risley M.G., Rashotte A.M. 2013. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. Plant and Cell Physiology 54(6): 971–981. DOI: 10.1093/pcp/pct049.