Have a personal or library account? Click to login
Changes in Morphological Traits Under Hypoxic Conditions in Broccoli Cultivars with Different Waterlogging Tolerance Cover

Changes in Morphological Traits Under Hypoxic Conditions in Broccoli Cultivars with Different Waterlogging Tolerance

Open Access
|Sep 2025

References

  1. Abiko T., Kotula L., Shiono K., Malik A.I., Colmer T.D., Nakazono M. 2012. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant, Cell and Environment 35(9): 1618–1630. DOI: 10.1111/j.1365-3040.2012.02513.x.
  2. ALIC 2017. Broccoli production and export trends in Australia. Overseas Information. Agriculture and Livestock Industries Corporation, Research Department, Japan. Vegetables, pp. 74–84. https://www.alic.go.jp/content/000141041.pdf [in Japanese]
  3. ALIC 2019. Vegetable production trends in major countries. Overseas Information. Agriculture and Livestock Industries Corporation, Research Department, Japan. Vegetables, pp. 63–82. https://www.alic.go.jp/content/001163715.pdf [in Japanese]
  4. Armstrong W. 1979. Aeration in higher plants. Advances in Botanical Research 7: 225–332. DOI: 10.1016/s0065-2296(08)60089-0.
  5. Bailey-Serres J., Lee S.C., Brinton E. 2012. Waterproofing crops: Effective flooding survival strategies. Plant Physiology 160(4): 1698–1709. DOI: 10.1104/pp.112.208173.
  6. Begg J.E., Turner N.C. 1976. Crop water deficits. Advances in Agronomy 28: 161–217. DOI: 10.1016/S0065-2113(08)60555-6.
  7. Bramley H., Turner D.W., Tyerman S.D., Turner N.C. 2007. Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and waterlogging. Advances in Agronomy 96: 133–196. DOI: 10.1016/s0065-2113(07)96002-2.
  8. Brundrett M.C., Kendrick B., Peterson C.A. 1991. Efficient lipid staining in plant material with Sudan red 7B of fluorol yellow 088 in polyethylene glycolglycerol. Biotechnic and Histochemistry 66(3): 111–116. DOI: 10.3109/10520299109110562.
  9. Colmer T.D. 2003. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment 26(1): 17–36. DOI: 10.1046/j.1365-3040.2003.00846.x.
  10. Daniel K., Hartman S. 2024. How plant roots respond to waterlogging. Journal of Experimental Botany 75(2): 511–525. DOI: 10.1093/jxb/erad332.
  11. Ejiri M., Fukao T., Miyashita T., Shiono K. 2021. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breeding Science 71(1): 40–50. DOI: 10.1270/jsbbs.20110.
  12. Eysholdt-Derzsó E., Sauter M. 2017. Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiology 175(1): 412–423. DOI: 10.1104/pp.17.00555.
  13. Gliński J., Lipiec J. 1990. Soil Physical Conditions and Plant Roots. CRC Press, Boca Raton, USA, 260 p. DOI: 10.1201/9781351076708.
  14. Hanba Y.T., Shibasaka M., Hayashi Y., Hayakawa T., Kasamo K., Terashima I., Katsuhara M. 2004. Over-expression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance assimilation in the leaves of transgenic rice plants. Plant and Cell Physiology 45(5): 521–529. DOI: 10.1093/pcp/pch070.
  15. Hara R., Jitsuyama Y., Suzuki T. 2023. Varietal differences in wet damage of broccoli (Brassica oleracea L. var. italica) under waterlogging conditions. Journal of Horticultural Research 31(2): 115–128. DOI: 10.2478/johr-2023-0026.
  16. Higashio H., Aizawa S., Kunihisa M., Murakami K., Tokuda S., Uragami A. 2012. Evaluation for comparison of waterlogging tolerance based on anaerobic respiration reaction of root in lettuce and broccoli. Horticultural Research (Japan) 11(4): 477–483. DOI: 10.2503/hrj.11.477. [in Japanese with English abstract]
  17. Hirasawa T., Ishihara K. 1991. On resistance to water transport in crop plants for estimating water uptake ability under intense transpiration. Japanese Journal of Crop Science 60(1): 174–183. DOI: 10.1626/jcs.60.174.
  18. Ide R., Ichiki A., Suzuki T., Jitsuyama Y. 2022. Analysis of yield reduction factors in processing tomatoes under waterlogging conditions. Scientia Horticulturae 295; 110840; 14 p. DOI: 10.1016/j.scienta.2021.110840.
  19. Jitsuyama Y. 2015. Morphological root responses of soybean to rhizosphere hypoxia reflect waterlogging tolerance. Canadian Journal of Plant Science 95(5): 999–1005. DOI: 10.4141/cjps-2014-370.
  20. Jitsuyama Y. 2017. Hypoxia-responsive root hydraulic conductivity influences soybean cultivar-specific water-logging tolerance. American Journal of Plant Sciences 8(4): 770–790. DOI: 10.4236/ajps.2017.84054.
  21. Jensen W.A. 1962. Botanical Histochemistry: Principles and Practice. W.H. Freeman and Company, San Francisco, California, USA, 408 p.
  22. Kato-Noguchi H., Kori T., Saito H. 1999. Effects of flooding and anoxia on activities of alcohol dehydrogenase and lactate dehydrogenase in maize seedlings. Environment Control Biology 37(3): 211–217. DOI: 10.2525/ecb1963.37.211.
  23. Katsuhara M., Koshio K., Shibasaka M., Hayashi Y., Hayakawa T., Kasamo K. 2003. Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant and Cell Physiology 44(12): 1378–1383. DOI: 10.1093/pcp/pcg167.
  24. Kawase M. 1981. Anatomical and morphological adaptation of plants to waterlogging. HortScience 16(1): 30–34. DOI: 10.21273/hortsci.16.1.30.
  25. Lin H.-H., Lin K.-H., Chen S.-C., Shen Y.-H., Lo H.-F. 2015. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Botanical Studies 56; 18; 11 p. DOI: 10.1186/s40529-015-0098-2.
  26. Little T.M., Hills F.J. 1978. The split-plot design. The split-split plot. In: Little T.M., Hills F.J. (Eds.), Agricultural experimentation: Design and analysis. Wiley, USA, pp. 87–113.
  27. Loreti E., van Veen H., Perata P. 2016. Plant responses to flooding stress. Current Opinion in Plant Biology 33: 64–71. DOI: 10.1016/j.pbi.2016.06.005.
  28. López-Berenguer C., García-Viguera C., Carvajal M. 2006. Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants? Plant and Soil 279: 13–23. DOI: 10.1007/s11104-005-7010-x.
  29. Ma Q., Yamaguchi T., Nakata N., Nakano T., Katsube-Tanaka T., Nakano J. 2005. Evaluation of root activity by bleeding sap from the basal stem in soybean plants under excessive soil water. Root Research 14(1): 3–8. DOI: 10.3117/rootres.14.3. [in Japanese with English abstract]
  30. Mano Y., Muraki M., Fujimori M., Takamizo T., Kindiger B. 2005. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142: 33–42. DOI: 10.1007/s10681-005-0449-2.
  31. Meinzer F.C., Grantz D.A. 1990. Stomatal and hydraulic conductance in growing sugarcane: Stomatal adjustment to water transport capacity. Plant, Cell and Environment 13(4): 383–388. DOI: 10.1111/j.1365-3040.1990.tb02142.x.
  32. Meng D., Fricke W. 2017. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress. Plant Physiology and Biochemistry 113: 64–77. DOI: 10.1016/j.plaphy.2017.02.001.
  33. Mustroph A., Lee S.C., Oosumi T., Zanetti M.E., Yang H., Ma K. et al. 2010. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiology 152(3): 1484–1500. DOI: 10.1104/pp.109.151845.
  34. Pang J., Zhou M., Mendham N., Shabala S. 2004. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Australian Journal of Agricultural Research 55(8): 895–906. DOI: 10.1071/ar03097.
  35. Pedersen O., Sauter M., Colmer T.D., Nakazono M. 2021. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist 229(1): 42–49. DOI: 10.1111/nph.16375.
  36. Ponnamperuma F.N. 1972. The chemistry of submerged soils. Advances in Agronomy 24: 29–96. DOI: 10.1016/s0065-2113(08)60633-1.
  37. Sauter M. 2013. Root responses to flooding. Current Opinion in Plant Biology 16(3): 282–286. DOI: 10.1016/j.pbi.2013.03.013.
  38. Shimamura S., Yamamoto R., Nakamura T., Shimada S., Komatsu S. 2010. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Annals of Botany 106(2): 277–284. DOI: 10.1093/aob/mcq123.
  39. Shiono K., Yoshikawa M., Kreszies T., Yamada S., Hojo Y., Matsuura T. et al. 2022. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). New Phytologist 233(2): 655–669. DOI: 10.1111/nph.17751.
  40. Tournaire-Roux C., Sutka M., Javot H., Gout E., Ger-beau P., Luu D.-T.et al. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425(6956): 393–397. DOI: 10.1038/nature01853.
  41. Tsukazawa K., Ota T., Sekiguchi A. 2009. Factor analysis of wet injury by rain and the solution in broccoli production area of central Kanto Plain. Agriculture and Horticulture 84(1): 80–90. https://agriknowledge.affrc.go.jp/RN/2010770947.pdf [in Japanese]
  42. Van Nguyen L., Takahashi R., Githiri S.M., Rodriguez T.O., Tsutsumi N., Kajihara S. et al. 2017. Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics 130: 743–755. DOI: 10.1007/s00122-016-2847-3.
  43. Vaziriyeganeh M., Lee S.H., Zwiazek J.J. 2018. Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa juncifolia and Puccinellia nuttalliana. Plant Science 276: 54–62. DOI: 10.1016/j.plantsci.2018.08.001.
  44. Voesenek L.A.C.J., Bailey-Serres J. 2015. Flood adaptive traits and processes: an overview. New Phytologist 206(1): 57–73. DOI: 10.1111/nph.13209.
  45. Watanabe K., Takahashi H., Sato S., Nishiuchi S., Omori F., Malik A.I. et al. 2017. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Plant, Cell and Environment 40(2): 304–316. DOI: 10.1111/pce.12849.
  46. Yamauchi T., Abe F., Kawaguchi K., Oyanagi A., Nakazono M. 2014. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. Plant Signaling and Behavior 9(4); e28506; 4 p. DOI: 10.4161/psb.28506.
  47. Yamauchi T., Abe F., Tsutsumi N., Nakazono M. 2019. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science 10; 259; 12 p. DOI: 10.3389/fpls.2019.00259.
DOI: https://doi.org/10.2478/johr-2025-0013 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Submitted on: Mar 1, 2025
Accepted on: Jun 1, 2025
Published on: Sep 19, 2025
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ryo Hara, Yutaka Jitsuyama, Takashi Suzuki, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT