Have a personal or library account? Click to login
Effects of Silver, Gold, and Platinum Nanoparticles on Selected Nematode Trophic Groups Cover

Effects of Silver, Gold, and Platinum Nanoparticles on Selected Nematode Trophic Groups

Open Access
|Dec 2023

References

  1. Addinsoft 2019. XLSTAT. Statistical Software for Excel. https://www.xlstat.com
  2. Abate B.A., Wingfield M.J., Slippers B., Hurley B.P. 2017. Commercialisation of entomopathogenic nematodes: should import regulations be revised? Biocontrol Science and Technology 27(2): 149–168. DOI: 10.1080/09583157.2016.1278200.
  3. Ardakani A.S. 2013. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 15(6): 671–677. DOI: 10.1163/15685411-00002710.
  4. Baronia R., Kumar P., Singh S.P., Walia R.K. 2020. Silver nanoparticles as a potential nematicide against Meloidogyne graminicola. Journal of Nematology 52(1); e2020–02; 9 p. DOI: 10.21307/jofnem-2020-002.
  5. Brown I.M., Gaugler R. 1997. Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica 43(5): 363–375. DOI: 10.1163/005025997x00102.
  6. Cromwell W.A., Yang J., Starr J.L., Jo Y.-K. 2014. Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. Journal of Nematology 46(3): 261–266.
  7. Ehlers R.-U. 2011. Regulation of biological control agents and the EU policy support action REBECA. In: Ehlers R.-U. (Ed.), Regulation of biological control agents. Springer, Dordrecht, pp. 3–23. DOI: 10.1007/978-90-481-3664-3_1.
  8. El-Deen A.H.N., El-Deeb B.A. 2018. Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse condition. Journal of Agricultural Science 10(2): 148–156. DOI: 10.5539/jas.v10n2p148.
  9. Exbrayat J.-M., Moudilou E.N., Lapied E. 2015. Harmful effects of nanoparticles on animals. Journal of Nanotechnology 2015; 861092; 10 p. DOI: 10.1155/2015/861092.
  10. Georgis R., Koppenhöfer A.M., Lacey L.A., Bélair G., Duncan L.W., Grewal P.S. et al. 2006. Successes and failures in the use of parasitic nematodes for pest control. Biological Control 38(1): 103–123. DOI: 10.1016/j.biocontrol.2005.11.005.
  11. Grün A.-L., Manz W., Kohl Y.L., Meier F., Straskraba S., Jost C. et al. 2019. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environmental Sciences Europe 31, 15; 22 p. DOI: 10.1186/s12302-019-0196-y.
  12. Grün A.-L., Straskraba S., Schulz S., Schloter M., Emmerling C. 2018. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. Journal of Environmental Sciences 69: 12–22. DOI: 10.1016/j.jes.2018.04.013.
  13. Hominick W.M., Briscoe B.R., del Pino F.G., Heng J., Hunt D.J., Kozodoy E. et al. 1997. Biosystematics of entomopathogenic nematodes: current status, protocols and definitions. Journal of Helminthology 71(4): 271–298. DOI: 10.1017/s0022149x00016096.
  14. Jadczak P., Kulpa D., Drozd R., Przewodowski W., Przewodowska A. 2020. Effect of AuNPs and AgNPs on the antioxidant system and antioxidant activity of lavender (Lavandula angustifolia Mill.) from in vitro cultures. Molecules 25(23); 5511; 18 p. DOI: 10.3390/molecules25235511.
  15. Kaya H.K., Stock S.P. 1997. Techniques in insect nematology. In: Lacey L.A. (Ed.), Manual of Techniques in Insect Pathology. Academic Press, pp. 281–324. DOI: 10.1016/b978-012432555-5/50016-6.
  16. Kaya H.K., Aguillera M.M., Alumai A., Choo H.Y., de la Torre M., Fodor A. et al. 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological Control 38(1): 134–155. DOI: 10.1016/j.biocontrol.2005.11.004.
  17. Khanna K., Kohli S.K., Handa N., Kaur H., Ohri P., Bhardwaj R. et al. 2021. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety 222; 112459; 17 p. DOI: 10.1016/j.ecoenv.2021.112459.
  18. Kim J, Shirasava T, Miyamoto Y. 2010. The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 31(22): 5849–5854. DOI: 10.1016/j.biomaterials.2010.03.077.
  19. Kim J.S., Kuk E., Yu K.N., Kim J.-H., Park S.J., Lee H.J. et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3(1): 95–101. DOI: 10.1016/j.nano.2006.12.001.
  20. Kim S., Ryu D.-Y. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology 33(2): 78–89. DOI: 10.1002/jat.2792.
  21. Koppenhöfer A.M., Kaya H.K., Taormino S.P. 1995. Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. Journal of Invertebrate Pathology 65(2): 193–199. DOI: 10.1006/jipa.1995.1028.
  22. Koppenhöfer A.M., Brown I.M., Gaugler R., Grewal P.S., Kaya H.K., Klein M.G. 2000. Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biological Control 19(3): 245–251. DOI: 10.1006/bcon.2000.0863.
  23. Kucharska K., Pezowicz E. 2009. The effect of silver nanoparticles on mortality and pathogenicity of entomopathogenic nematodes Heterorhabditis bacteriophora (Poinar, 1976) from Nematop biopreparation. Young Scientists Towards the Challenges of Modern Technology, Warszawa, Poland, pp. 50–54.
  24. Kucharska K., Tumialis D., Pezowicz E., Skrzecz I. 2011a. The effect of gold nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes from Owinema biopreparation. IOBC/WPRS Bulletin 66: 347–349.
  25. Kucharska K., Pezowicz E., Tumialis D., Barkowska M. 2011b. Effect of silver nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes. Ecological Chemistry Engineering A 18(8): 1065–1070.
  26. Kucharska K., Zajdel B., Pezowicz E., Jarmuł-Pietraszczyk J., Mazurkiewicz A., Tumialis D. 2016. Control of the lesser mealworm Alphitobius diaperinus using entomopathogenic nematodes (EPNs) combined with nanoparticles. Annals of Warsaw University of Life Sciences – SGGW Animal Science 55(1): 57–67.
  27. Kung S.-P., Gaugler R., Kaya H.K. 1991. Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology 57(2): 242–249. DOI: 10.1016/0022-2011(91)90123-8.
  28. Lara H.H., Garza-Treviño E.N., Ixtepan-Turrent L., Singh D.K. 2011. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology 9; 30; 8 p. DOI: 10.1186/1477-3155-9-30.
  29. Liu F.-K., Ker C.-J., Chang Y.-C., Ko F.-H., Chu T.-C., Dai B.-T. 2003. Microwave heating for the preparation of nanometer gold particles. Japanese Journal of Applied Physics 42(6S): 4152–4158. DOI: 10.1143/jjap.42.4152.
  30. Lespes G., Faucher S., Slaveykova V.I. 2020. Natural nanoparticles, anthropogenic nanoparticles, where is the frontier? Frontiers in Environmental Science 8; 71; 5 p. DOI: 10.3389/fenvs.2020.00071.
  31. Makirita W.E., Yong L., He N., Mbega E.R., Chacha M., Li X., Zhang F. 2020. Effects of nanoparticles of metal oxides on the survival of the entomopathogenic nematode: Steinernema carpocapsae. Journal of Nanoscience and Nanotechnology 20(3):1434–1439. DOI: 10.1166/jnn.2020.17164.
  32. Manzoor F. 2012. Synergism of imidacloprid and entomopathogenic nematodes for the control of eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Pakistan Journal of Zoology 44(5): 1397–1403.
  33. Mousavi S.R., Rezaei M. 2011. Nanotechnology in agriculture and food production. Journal of Applied Environmental and Biological Sciences 1(10): 414–419.
  34. Nguyen K.B. 2007. Methodology, morphology and identification. In: Nguyen K.B., Hunt D.J. (Eds.), Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Nematology Monographs and Perspectives 5: 59–119. DOI: 10.1163/ej.9789004152939.i-816.
  35. Nguyen K.B., Smart G.C. Jr. 1995. Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nemata: Rhabditida). Journal of Nematology 27(2): 206–212.
  36. Peters A., Han R., Yan X., Leite L.G. 2017. Production of entomopathogenic nematodes. In: Lacey L.A. (Ed.), Microbial control of insect and mite pests. Elsevier, pp. 157–170. DOI: 10.1016/b978-0-12-803527-6.00010-x.
  37. Prabhu S., Poulose E.K. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2; 32; 10 p. DOI: 10.1186/2228-5326-2-32.
  38. Shapiro-Ilan D.I., Han R., Dolinksi C. 2012. Entomopathogenic nematode production and application technology. Journal of Nematology 44(2): 206–217.
  39. Shapiro-Ilan D.I., Gouge D.H., Koppenhöfer A.M. 2002. Factors affecting commercial success: Case studies in cotton, turf and citrus. In: Gaugler R. (Ed.), Entomopathogenic Nematology. CABI, UK, pp. 333–355. DOI: 10.1079/9780851995670.0333.
  40. Singh S., Singh B.K., Yadav S.M., Gupta A.K. 2015. Applications of nanotechnology in agricultural and their role in disease management. Research Journal of Nanoscience and Nanotechnology 5(1): 1–5. DOI: 10.3923/rjnn.2015.1.5.
  41. Stuart R.J., Barbercheck M.E., Grewal P.S., Taylor R.A.J., Hoy C.W. 2006. Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control 38(1): 80–102. DOI: 10.1016/j.biocontrol.2005.09.019.
  42. Taha E.H., Abo-Shady N.M. 2016. Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. International Journal of Zoological Research 12(3–4): 47–50. DOI: 10.3923/ijzr.2016.47.50.
  43. Taha E.H. 2016. Nematicidal effects of silver nanoparticles on root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse. Journal of Plant Protection and Pathology 7(5): 333–337. DOI: 10.21608/jppp.2016.50566.
  44. Thakur R.K., Shirkot P. 2017. Potential of biogold nanoparticles to control plant pathogenic nematodes. Journal of Bioanalysis and Biomedicine 9(4): 220–222. DOI: 10.4172/1948-593x.1000182.
  45. Thakur R.K., Shirkot P., Verma A. 2017. Exploration of microbial diversity of Himalaya region for gold nanoparticles synthesizing bacteria. International Journal of Current Microbiology and Applied Sciences 6(8): 2191–2210. DOI: 10.20546/ijcmas.2017.608.259.
  46. Turkevich J., Stevenson P.C., Hillier J. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussion of the Faraday Society 11: 55–75. DOI: 10.1039/df9511100055.
  47. Wesołowska A., Jadczak P., Kulpa D., Przewodowski W. 2019. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules 24(3); 606; 13 p. DOI: 10.3390/molecules24030606.
DOI: https://doi.org/10.2478/johr-2023-0035 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 23 - 34
Submitted on: Oct 1, 2023
Accepted on: Dec 1, 2023
Published on: Dec 29, 2023
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Magdalena Dzięgielewska, Andrzej Skwiercz, Anna Wesołowska, Dawid Kozacki, Włodzimierz Przewodowski, Danuta Kulpa, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution 4.0 License.