References
- ALIC 2017. Broccoli production and export trends in Australia. Overseas Information. Agriculture and Livestock Industries Corporation, Research Department, Japan. Vegetables, pp. 74–84. https://www.alic.go.jp/content/000141041.pdf [in Japanese]
- ALIC 2019. Vegetable production trends in major countries. Overseas Information. Agriculture and Livestock Industries Corporation, Research Department, Japan. Vegetables, pp. 63–82. https://www.alic.go.jp/content/001163715.pdf [in Japanese]
- Bailey-Serres J., Lee S.C., Brinton E. 2012. Waterproofing crops: Effective flooding survival strategies. Plant Physiology 160(4): 1698–1709. DOI: 10.1104/pp.112.208173.
- Bradford K.J., Yang S.F. 1981. Physiological responses of plants to waterlogging. HortScience 16(1): 25–30. DOI: 10.21273/hortsci.16.1.25.
- Casierra-Posada F., Peña-Olmos J.E. 2022. Prolonged waterlogging reduces growth and yield in broccoli plants (Brassica oleracea var. italica). Gesunde Pflanzen 74(2): 249–257. DOI: 10.1007/s10343-021-00605-y.
- Drew M.C. 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology 48: 223–250. DOI: 10.1146/annurev.arplant.48.1.223.
- Fahey J.W., Holtzclaw W.D., Wehage S.L., Wade K.L., Stephenson K.K., Talalay P. 2015. Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PLoS ONE 10(11); e0140963; 13 p. DOI: 10.1371/journal.pone.0140963.
- Fukase K. 2013. Measures taken for the change of the volume of imports by agricultural cooperative sales organization in broccoli production areas: A case study of Fukaya City, Saitama Prefecture. Quarterly Journal of Geography 65(3): 121–138. DOI: 10.5190/tga.65.121. [in Japanese with English abstract]
- Fukuoka N., Yoshioka H., Shimizu E., Fujiwara T. 1996. Relationship between root respiration during the seedling stage and rooting ability of cabbage and broccoli plants after transplantation. Journal of the Horticultural Association of Japan 65(1): 95–103. DOI: 10.2503/jjshs.65.95. [in Japanese with English abstract]
- Hara R., Jitsuyama Y., Suzuki T. 2021. The effect of different wet treatment periods on the biomass of shoots and roots of some broccoli cultivars. Proceedings of the Hokkaido Society for Horticultural Research 54: 8–9. [in Japanese]
- Hirota T. 2017. Damage to agriculture in Hokkaido by typhoon in 2016. Trends in meteorological disasters and agricultural disaster risk management under climate change. Agriculture and Horticulture 92(9): 804. https://agriknowledge.affrc.go.jp/RN/2030912545.pdf [in Japanese]
- House W.A. 1999. Trace element bioavailability as exemplified by iron and zinc. Field Crops Research 60(1–2): 115–141. DOI: 10.1016/s0378-4290(98)00136-1.
- HRO 2019. The characteristics of broccoli cultivars. To aim for harvest at the same time. Hokkaido Research Organization, Local Independent Administrative Agency. https://kachimai.jp/dl/pdf_download_book.php?f=agri2019-029&book=agri2019 [in Japanese]
- Ide R., Ichiki A., Suzuki T., Jitsuyama Y. 2022. Analysis of yield reduction factors in processing tomatoes under waterlogging conditions. Scientia Horticulturae 295; 110840; 14 p. DOI: 10.1016/j.scienta.2021.110840.
- Inada H., Yamabe-Mizuno A., Nakahara M. 2010. Effects of environmental factors on stomatal diffusive conductance and transpiration rate of leaves of tomato seedlings. Bulletin of the Horticultural Institute, Ibaraki Agricultural Center 17: 17–22. https://agriknowledge.affrc.go.jp/RN/2030792989.pdf [in Japanese with English abstract]
- Jitsuyama Y. 2013. Responses of Japanese soybeans to hypoxic condition at rhizosphere were different depending upon cultivars and ambient temperatures. American Journal of Plant Sciences 4(6): 1297–1308. DOI: 10.4236/ajps.2013.46161.
- Jitsuyama Y. 2015. Morphological root responses of soybean to rhizosphere hypoxia reflect waterlogging tolerance. Canadian Journal of Plant Science 95(5): 999–1005. DOI: 10.4141/cjps-2014-370.
- Jitsuyama Y. 2017. Hypoxia-responsive root hydraulic conductivity influences soybean cultivar-specific waterlogging tolerance. American Journal of Plant Sciences 8(4): 770–790. DOI: 10.4236/ajps.2017.84054.
- Jitsuyama Y., Ichiki A., Ide R., Shimura H., Suzuki T. 2019. The processing tomato cultivar ‘Natsunoshun’ is susceptible to an excess or lack of soil moisture after the flowering stage. Horticulture Journal 88(2): 232–244. DOI: 10.2503/hortj.utd-008.
- Kramer P.J. 1951. Causes of injury to plants resulting from flooding of the soil. Plant Physiology 26(4): 722–736. DOI: 10.1104/pp.26.4.722.
- Kumar P., Srivastava D.K. 2016. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnology Letters 38(7): 1049–1063. DOI: 10.1007/s10529-016-2080-9.
- Lin H.-H., Lin K.-H., Chen S.-C., Shen Y.-H., Lo H.-F. 2015. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Botanical Studies 56; 18; 11 p. DOI: 10.1186/s40529-015-0098-2.
- Little T.M., Hills F.J. 1978. The split-plot design. The split-split plot. In: Little T.M., Hills F.J. (Eds.), Agricultural experimentation: Design and analysis. Wiley, USA, pp. 87–113.
- MAFF 2020. Vegetable production and shipment statistics for 2019. e-Stat, broccoli. Ministry of Agriculture, Forestry and Fisheries, Japan. https://www.estat.go.jp/dbview?sid=0003423835 [in Japanese]
- MAFF 2023. Prefectures of high-yielding broccoli. Ministry of Agriculture, Forestry and Fisheries, Japan. https://www.maff.go.jp/j/kids/crops/broccoli/farm.html [in Japanese]
- Nakakita E., Osakada Y. 2018. Estimation of future changes in the heavy rainfall and atmospheric characteristics in baiu season under climate change. Journal of Japan Society of Civil Engineers, Series B1 (Hydraulic Engineering) 74(4): 139–144. DOI: 10.2208/jscejhe.74.I_139. [in Japanese with English abstract]
- Nakano Y., Kuriyama J., Takahashi M., Yanai Y., Sasaki H., Okada K. 2020. Drainage and irrigation controlled by farm-oriented enhancing aquatic system for stable production of summer-sown winter-harvest broccoli (Brassica oleracea var. italica). Horticultural Research (Japan) 19: 355–364. DOI: 10.2503/hrj.19.355. [in Japanese with English abstract]
- NARO 2017. Hokkaido Agriculture Research Center, NARO (HARC/NARO). National Agriculture and Food Research Organization, Japan. https://www.naro.go.jp/publicity_report/publication/files/2017NARO_english_1.pdf
- Takahashi M., Ohishi M., Sato F., Okada K., Sasaki H. 2021. Enlarging broccoli (Brassica oleracea L. var. italica) heads by extending the growing period and sparse planting to increase floret yield. Horticulture Journal 90(1): 75–84. DOI: 10.2503/hortj.utd-241.
- Tsukazawa K., Ota T., Sekiguchi A. 2009. Factor analysis of wet injury by rain and the solution in broccoli production area of central Kanto Plain. Agriculture and Horticulture 84(1): 80–90. https://agriknowledge.affrc.go.jp/RN/2010770947.pdf [in Japanese]
- Vallejo F., García-Viguera C., Tomás-Barberán F.A. 2003. Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development. Journal of Agricultural and Food Chemistry 51(13): 3776–3782. DOI: 10.1021/jf0212338.
- Watanabe S., Nishida T., Nakata T., Yoshida N., Yokota S., Unemura N. 2021. Flower buds detection using deep learning in broccoli sorting automatic harvester. CF-011, Forum on Information Technology (FIT2021). Institute of Electronics, Information and Communication Engineers, Japan. https://www.ieice.org/publications/conference-FIT-DVDs/FIT2021/data/pdf/CF-011.pdf [in Japanese]
- Zhang Y., Talalay P., Cho C.-G., Posner G.H. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proceedings of the National Academy of Sciences of the United States of America 89(6): 2399–2403. DOI: 10.1073/pnas.89.6.2399.