Bell P.G., Gaze D.C., Davison G.W., George T.W., Scotter M.J., Howatson G. 2014. Montmorency tart cherry (Prunus cerasus L.) concentrate lowers uric acid, independent of plasma cyanidin-3-O-gluco-siderutinoside. Journal of Functional Foods 11: 82–90. DOI: 10.1016/j.jff.2014.09.004.10.1016/j.jff.2014.09.004
Braga A.R.C., Murador D.C, de Souza Mesquita L.M., de Rosso V.V. 2017. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68: 31–40. DOI: 10.1016/j.jfca.2017.07.031.10.1016/j.jfca.2017.07.031
Calín-Sánchez Á., Kharaghani A., Lech K., Figiel A., Carbonell-Barrachina Á.A., Tsotsas E. 2015. Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food and Bioprocess Technology 8(1): 63–74. DOI: 10.1007/s11947-014-1383-x.10.1007/s11947-014-1383-x
Cárcel J.A., Garciá-Pérez J.V., Riera E., Mulet A. 2007. Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology 25: 185–193. DOI: 10.1080/07373930601161070.10.1080/07373930601161070
Fan K., Zhang M., Mujumdar A.S. 2017. Application of airborne ultrasound in the convective drying of fruits and vegetables: a review. Ultrasonics – Sonochemistry 39: 47–57. DOI: 10.1016/j.ultsonch.2017.04.001.10.1016/j.ultsonch.2017.04.00128732971
Figiel A., Michalska A. 2017. Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. International Journal of Molecular Sciences 18(1; 71), 18 p. DOI: 10.3390/ijms18010071.10.3390/ijms18010071529770628042845
Horuz E., Bozkurt H., Karataş H., Maskan M. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chemistry 230: 295–305. DOI: 10.1016/j.foodchem.2017.03.046.10.1016/j.foodchem.2017.03.04628407914
Khoo G.M., Clausen M.R., Pedersen B.H., Larsen E. 2011. Bioactivity and total phenolic content of 34 sour cherry cultivars. Journal of Food Composition and Analysis 24: 772–776. DOI: 10.1016/j.jfca.2011.03.004.10.1016/j.jfca.2011.03.004
Konopacka D., Cybulska J., Zdunek A., Dyki B., Machlańska A., Celejewska K. 2017. The combined effect of ultrasound and enzymatic treatment on the nanostructure, carotenoid retention and sensory properties of ready-to-eat carrot chips. LWT – Food Science and Technology 85: 427–433. DOI: 10.1016/j.lwt.2016.11.085.10.1016/j.lwt.2016.11.085
Konopacka D., Jesionkowska K., Klewicki R., Bonazzi C. 2009. The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit. Journal of Horticultural Science and Biotechnology 84(6): 80–84; ISAFRUIT (Special issue). DOI: 10.1080/14620316.2009.11512600.10.1080/14620316.2009.11512600
Konopacka D., Kowalski S.J. 2013. Application of ultrasound to enhance drying processes of biological materials especially susceptible to thermal exposure. Proceedings of XIII Polish Drying Symposium. 5–6 September, Poland, CD-ROM: 262, 3 p.
Konopacka D., Parosa R., Piecko J., Połubok A., Siucińska K. 2015b. Ultrasound & microwave hybrid drying device for colored fruit preservation – product quality and energy efficiency. Proceedings of the 8th Asia-Pacific Drying Conference (ADC 2015). 10–12 August, Malaysia, pp. 252–258.
Konopacka D., Płocharski W., Siucińska K., Kowalski S.J., Mierzwa D. 2015a. Ultrasound application as a useful technique in the enhancement of fruit and vegetable drying. Przemysł Fermentacyjny i Owocowo-Warzywny 59(9): 27–31. DOI: 10.15199/64.2015.9.3. [in Polish with English abstract]10.15199/64.2015.9.3.[
Konopacka D., Mieszczakowska-Frąc M. 2014. The quantitative and qualitative changes of sugars in sour cherry fruit subjected to osmo-convective drying. Zeszyty Problemowe Postępów Nauk Rolniczych 578: 61–70. [in Polish with English abstract]
Kowalski S.J., Pawłowski A., Szadzińska J., Łechtańska J., Stasiak M. 2016. High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science and Emerging Technologies 34: 225–233. DOI: 10.1016/j.ifset.2016.02.006.10.1016/j.ifset.2016.02.006
Kowalski S.J., Szadzińska J., Pawłowski A. 2015. Ultrasonic-assisted osmotic dehydration of carrot followed by convective drying with continuous and intermittent heating. Drying Technology 33(13): 1570–1580. DOI: 10.1080/07373937.2015.1012265.10.1080/07373937.2015.1012265
Michalska A., Wojdyło A., Lech K., Łysiak G.P., Figiel A. 2016. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry 207: 223–232. DOI: 10.1016/j.foodchem.2016.03.075.10.1016/j.foodchem.2016.03.075
Mieszczakowska-Frąc M., Buczek M., Kruczyńska D., Markowski J. 2015. Cloudy red-fleshed apple juice production and quality. Polish Journal of Natural Sciences 30(1): 59–71.
Onwude D.I., Hashim N., Janius R., Abdan K., Chen G., Oladejo A.O. 2017. Non-thermal hybrid drying of fruits and vegetables: a review of current technologies. Innovative Food Science and Emerging Technologies 43: 223–238. DOI: 10.1016/j.ifset.2017.08.010.10.1016/j.ifset.2017.08.010
Orrego C.E., Salgado N., Botero C.A. 2014. Developments and trends in fruit bar production and characterization. Critical Reviews in Food Science and Nutrition 54: 84–97. DOI: 10.1080/10408398.2011.571798.10.1080/10408398.2011.571798
Piasecka E., Uczciwek M., Konopacka D., Mieszczakowska-Frąc M., Szulc M., Bonazzi C. 2013. Effect of long-time storage on the content of polyphenols and ascorbic acid in osmo-convectively dried and osmo-freeze-dried fruits. Journal of Food Processing and Preservation 37: 198–209. DOI: 10.1111/j.1745-4549.2011.00637.x.10.1111/j.1745-4549.2011.00637.x
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10): 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3
Rodríguez Ó., Eim V., Rosselló C., Femenia A., Cárcel J.A., Simal S. 2017. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture 98(5): 1660–1673. DOI: 10.1002/jsfa.8673.10.1002/jsfa.867328906555
Septembre-Malaterre A., Remize F., Poucheret P. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International 104: 86–99. DOI: 10.1016/j.foodres.2017.09.031.10.1016/j.foodres.2017.09.03129433787
Sijtsema S.J., Jesionkowska K., Symoneaux R., Konopacka D., Snoek H. 2012. Perceptions of the health and convenience characteristics of fresh and dried fruits. LWT – Food Science and Technology 49: 275–281. DOI: 10.1016/j.lwt.2012.04.027.10.1016/j.lwt.2012.04.027
Siucińska K., Konopacka D., Parosa R. 2015. Preservation of highbush blueberry fruit (Vaccinium corymbosum L.) using novel ultrasound assisted drying techniques. In: Proceedings of the International Conference on Food Chemistry and Technology (FCT–2015). 16–18 November, USA, p. 39.
Siucińska K., Konopacka D., Mieszczakowska-Frąc M., Połubok A. 2016a. The effects of ultrasound on quality and nutritional aspects of dried sour cherries during shelf-life. LWT – Food Science and Technology 68: 168–173. DOI: 10.1016/j.lwt.2015.11.055.10.1016/j.lwt.2015.11.055
Siucińska K., Mieszczakowska-Frąc M., Połubok A., Konopacka D. 2016b. Effects of ultrasound assistance on dehydration processes and bioactive component retention of osmo-dried sour cherries. Journal of Food Science 81(7): C1654–C1661. DOI: 10.1111/1750-3841.13368.10.1111/1750-3841.1336827299365
Szadzińska J., Łechtańska J., Kowalski S.J., Stasiak M. 2017. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry 34: 531–539. DOI: 10.1016/j.ultsonch.2016.06.030.10.1016/j.ultsonch.2016.06.03027773279
Wojdyło A., Figiel A., Lech K., Nowicka P., Oszmiański J. 2014b. Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology 7: 829–841. DOI: 10.1007/s11947-013-1130-8.10.1007/s11947-013-1130-8
Wojdyło A., Nowicka P., Laskowski P., Oszmiański J. 2014a. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. Journal of Agricultural and Food Chemistry 62: 12332–12345. DOI: 10.1021/jf504023z.10.1021/jf504023z25495123