Have a personal or library account? Click to login

The Effect of Hybrid Drying (Convective-Microwave-Ultrasound) on the Bioactive Properties of Osmo-Treated Sour Cherries

Open Access
|Jun 2018

References

  1. Bell P.G., Gaze D.C., Davison G.W., George T.W., Scotter M.J., Howatson G. 2014. Montmorency tart cherry (Prunus cerasus L.) concentrate lowers uric acid, independent of plasma cyanidin-3-O-gluco-siderutinoside. Journal of Functional Foods 11: 82–90. DOI: 10.1016/j.jff.2014.09.004.10.1016/j.jff.2014.09.004
  2. Braga A.R.C., Murador D.C, de Souza Mesquita L.M., de Rosso V.V. 2017. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68: 31–40. DOI: 10.1016/j.jfca.2017.07.031.10.1016/j.jfca.2017.07.031
  3. Calín-Sánchez Á., Kharaghani A., Lech K., Figiel A., Carbonell-Barrachina Á.A., Tsotsas E. 2015. Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food and Bioprocess Technology 8(1): 63–74. DOI: 10.1007/s11947-014-1383-x.10.1007/s11947-014-1383-x
  4. Cárcel J.A., Garciá-Pérez J.V., Riera E., Mulet A. 2007. Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology 25: 185–193. DOI: 10.1080/07373930601161070.10.1080/07373930601161070
  5. Damar İ., Ekşi A. 2012. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chemistry 135: 2910–2914. DOI: 10.1016/j.foodchem.2012.07.032.10.1016/j.foodchem.2012.07.03222980889
  6. Fan K., Zhang M., Mujumdar A.S. 2017. Application of airborne ultrasound in the convective drying of fruits and vegetables: a review. Ultrasonics – Sonochemistry 39: 47–57. DOI: 10.1016/j.ultsonch.2017.04.001.10.1016/j.ultsonch.2017.04.00128732971
  7. Figiel A., Michalska A. 2017. Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. International Journal of Molecular Sciences 18(1; 71), 18 p. DOI: 10.3390/ijms18010071.10.3390/ijms18010071529770628042845
  8. Horuz E., Bozkurt H., Karataş H., Maskan M. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chemistry 230: 295–305. DOI: 10.1016/j.foodchem.2017.03.046.10.1016/j.foodchem.2017.03.04628407914
  9. Khoo G.M., Clausen M.R., Pedersen B.H., Larsen E. 2011. Bioactivity and total phenolic content of 34 sour cherry cultivars. Journal of Food Composition and Analysis 24: 772–776. DOI: 10.1016/j.jfca.2011.03.004.10.1016/j.jfca.2011.03.004
  10. Konopacka D., Cybulska J., Zdunek A., Dyki B., Machlańska A., Celejewska K. 2017. The combined effect of ultrasound and enzymatic treatment on the nanostructure, carotenoid retention and sensory properties of ready-to-eat carrot chips. LWT – Food Science and Technology 85: 427–433. DOI: 10.1016/j.lwt.2016.11.085.10.1016/j.lwt.2016.11.085
  11. Konopacka D., Jesionkowska K., Klewicki R., Bonazzi C. 2009. The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit. Journal of Horticultural Science and Biotechnology 84(6): 80–84; ISAFRUIT (Special issue). DOI: 10.1080/14620316.2009.11512600.10.1080/14620316.2009.11512600
  12. Konopacka D., Kowalski S.J. 2013. Application of ultrasound to enhance drying processes of biological materials especially susceptible to thermal exposure. Proceedings of XIII Polish Drying Symposium. 5–6 September, Poland, CD-ROM: 262, 3 p.
  13. Konopacka D., Parosa R., Piecko J., Połubok A., Siucińska K. 2015b. Ultrasound & microwave hybrid drying device for colored fruit preservation – product quality and energy efficiency. Proceedings of the 8th Asia-Pacific Drying Conference (ADC 2015). 10–12 August, Malaysia, pp. 252–258.
  14. Konopacka D., Płocharski W., Siucińska K., Kowalski S.J., Mierzwa D. 2015a. Ultrasound application as a useful technique in the enhancement of fruit and vegetable drying. Przemysł Fermentacyjny i Owocowo-Warzywny 59(9): 27–31. DOI: 10.15199/64.2015.9.3. [in Polish with English abstract]10.15199/64.2015.9.3.[
  15. Konopacka D., Mieszczakowska-Frąc M. 2014. The quantitative and qualitative changes of sugars in sour cherry fruit subjected to osmo-convective drying. Zeszyty Problemowe Postępów Nauk Rolniczych 578: 61–70. [in Polish with English abstract]
  16. Konopacka D., Siucińska K., Grześkowiak P., Kowalczyk K., Ziętek P., Żytkiewicz J., Parosa R. 2017. Suszarka. Patent PL 227427 B1.
  17. Kowalski S.J., Pawłowski A. 2015. Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering 156: 1–9. DOI: 10.1016/j.jfoodeng.2015.01.023.10.1016/j.jfoodeng.2015.01.023
  18. Kowalski S.J., Pawłowski A., Szadzińska J., Łechtańska J., Stasiak M. 2016. High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science and Emerging Technologies 34: 225–233. DOI: 10.1016/j.ifset.2016.02.006.10.1016/j.ifset.2016.02.006
  19. Kowalski S.J., Szadzińska J., Pawłowski A. 2015. Ultrasonic-assisted osmotic dehydration of carrot followed by convective drying with continuous and intermittent heating. Drying Technology 33(13): 1570–1580. DOI: 10.1080/07373937.2015.1012265.10.1080/07373937.2015.1012265
  20. Kumar C., Karim M.A., Joardder M.U.H. 2014. Intermittent drying of food products: a critical review. Journal of Food Engineering 121: 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.10.1016/j.jfoodeng.2013.08.014
  21. Lewicki P.P. 2006. Design of hot air drying for better foods. Trends in Food Science and Technology 17: 153–163. DOI: 10.1016/j.tifs.2005.10.012.10.1016/j.tifs.2005.10.012
  22. Michalska A., Wojdyło A., Lech K., Łysiak G.P., Figiel A. 2016. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry 207: 223–232. DOI: 10.1016/j.foodchem.2016.03.075.10.1016/j.foodchem.2016.03.075
  23. Mieszczakowska-Frąc M., Buczek M., Kruczyńska D., Markowski J. 2015. Cloudy red-fleshed apple juice production and quality. Polish Journal of Natural Sciences 30(1): 59–71.
  24. Musielak G., Mierzwa D., Kroehnke J. 2016. Food drying enhancement by ultrasound – a review. Trends in Food Science and Technology 56: 126–141. DOI: 10.1016/j.tifs.2016.08.003.10.1016/j.tifs.2016.08.003
  25. Onwude D.I., Hashim N., Janius R., Abdan K., Chen G., Oladejo A.O. 2017. Non-thermal hybrid drying of fruits and vegetables: a review of current technologies. Innovative Food Science and Emerging Technologies 43: 223–238. DOI: 10.1016/j.ifset.2017.08.010.10.1016/j.ifset.2017.08.010
  26. Orrego C.E., Salgado N., Botero C.A. 2014. Developments and trends in fruit bar production and characterization. Critical Reviews in Food Science and Nutrition 54: 84–97. DOI: 10.1080/10408398.2011.571798.10.1080/10408398.2011.571798
  27. Piasecka E., Uczciwek M., Konopacka D., Mieszczakowska-Frąc M., Szulc M., Bonazzi C. 2013. Effect of long-time storage on the content of polyphenols and ascorbic acid in osmo-convectively dried and osmo-freeze-dried fruits. Journal of Food Processing and Preservation 37: 198–209. DOI: 10.1111/j.1745-4549.2011.00637.x.10.1111/j.1745-4549.2011.00637.x
  28. Rajewska K., Mierzwa D. 2017. Influence of ultrasound on the microstructure of plant tissue. Innovative Food Science and Emerging Technologies 43: 117–129. DOI: 10.1016/j.ifset.2017.07.034.10.1016/j.ifset.2017.07.034
  29. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10): 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3
  30. Rodríguez Ó., Eim V., Rosselló C., Femenia A., Cárcel J.A., Simal S. 2017. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture 98(5): 1660–1673. DOI: 10.1002/jsfa.8673.10.1002/jsfa.867328906555
  31. Septembre-Malaterre A., Remize F., Poucheret P. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International 104: 86–99. DOI: 10.1016/j.foodres.2017.09.031.10.1016/j.foodres.2017.09.03129433787
  32. Sijtsema S.J., Jesionkowska K., Symoneaux R., Konopacka D., Snoek H. 2012. Perceptions of the health and convenience characteristics of fresh and dried fruits. LWT – Food Science and Technology 49: 275–281. DOI: 10.1016/j.lwt.2012.04.027.10.1016/j.lwt.2012.04.027
  33. Siucińska K., Konopacka D. 2014. Application of ultrasound to modify and improve dried fruit and vegetable tissue: a review. Drying Technology 32: 1360–1368. DOI: 10.1080/07373937.2014.916719.10.1080/07373937.2014.916719
  34. Siucińska K., Konopacka D., Parosa R. 2015. Preservation of highbush blueberry fruit (Vaccinium corymbosum L.) using novel ultrasound assisted drying techniques. In: Proceedings of the International Conference on Food Chemistry and Technology (FCT–2015). 16–18 November, USA, p. 39.
  35. Siucińska K., Konopacka D., Mieszczakowska-Frąc M., Połubok A. 2016a. The effects of ultrasound on quality and nutritional aspects of dried sour cherries during shelf-life. LWT – Food Science and Technology 68: 168–173. DOI: 10.1016/j.lwt.2015.11.055.10.1016/j.lwt.2015.11.055
  36. Siucińska K., Mieszczakowska-Frąc M., Połubok A., Konopacka D. 2016b. Effects of ultrasound assistance on dehydration processes and bioactive component retention of osmo-dried sour cherries. Journal of Food Science 81(7): C1654–C1661. DOI: 10.1111/1750-3841.13368.10.1111/1750-3841.1336827299365
  37. Szadzińska J., Kowalski S.J., Stasiak M. 2016. Microwave and ultrasound enhancement of convective drying of strawberries: experimental and modeling efficiency. International Journal of Heat and Mass Transfer 103: 1065–1074. DOI: 10.1016/j.ijheat-masstransfer.2016.08.001.10.1016/j.ijheat-masstransfer.2016.08.001
  38. Szadzińska J., Łechtańska J., Kowalski S.J., Stasiak M. 2017. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry 34: 531–539. DOI: 10.1016/j.ultsonch.2016.06.030.10.1016/j.ultsonch.2016.06.03027773279
  39. The Red Report: The science behind tart cherries. 2012. Cherry Marketing Institute. http://www.choosecherries.com/wp-content/uploads/2014/08/The-Red-Report.pdf (accessed October 24th, 2017)
  40. Wojdyło A., Figiel A., Lech K., Nowicka P., Oszmiański J. 2014b. Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology 7: 829–841. DOI: 10.1007/s11947-013-1130-8.10.1007/s11947-013-1130-8
  41. Wojdyło A., Nowicka P., Laskowski P., Oszmiański J. 2014a. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. Journal of Agricultural and Food Chemistry 62: 12332–12345. DOI: 10.1021/jf504023z.10.1021/jf504023z25495123
  42. Zielinska M., Michalska A. 2016. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry 212: 671–680. DOI: 10.1016/j.food-chem.2016.06.003.10.1016/j.food-chem.2016.06.003
DOI: https://doi.org/10.2478/johr-2018-0003 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 23 - 36
Submitted on: Dec 1, 2017
Accepted on: Apr 1, 2018
Published on: Jun 29, 2018
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Karolina Celejewska, Monika Mieszczakowska-Frąc, Dorota Konopacka, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.