Have a personal or library account? Click to login
The Climatic Energy Balance Diagram (CEBD) highlights changes in the hydrological cycle of the Danube River basin Cover

The Climatic Energy Balance Diagram (CEBD) highlights changes in the hydrological cycle of the Danube River basin

By: László Báder  
Open Access
|Mar 2025

References

  1. Báder, L., Szilágyi, J., 2023. Widening Gap of Land Evaporation to Reference Evapotranspiration Implies Increasing Vulnerability to Droughts in Hungary. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/PPci.21836
  2. Báder, L., 2023. Assessing the water balance of Hungary in the shadow of climate change (In Hungarian: Magyarország vízmérlege és az éghajlatváltozás). Hungarian Journal of Hydrology, 103, 1. https://doi.org/10.59258/HK.10410
  3. Báder, L, Szilágyi, J., Négyesi, K., Nagy, E., Földváry, L., 2023a. Changes and trends in the climatic water balance of the Danube River basin based on meteorological, hydrological, and gravimetric data for the period 1961-2020. In: Proc. HydroCarpath Conference, Vienna Austria, 9. Nov. 2023. https://doi.org/10.35511/978-963-334-505-4
  4. Báder, L., Szilágyi, J., Négyesi, K., 2023b. Freshwater paradox: will saving of water help in mitigating climate change or increase the instability of the hydrological cycle? In: Proc. EMS Annual Meeting 2023, Bratislava, Slovakia, 4–8 Sep 2023, EMS2023-528. https://doi.org/10.5194/ems2023-528
  5. Bertalanffy, L. von, 1968. General System Theory. George Braziller, New York, pp. 30–53.
  6. Eiseltová, M., Pokorny, J., Hesslerová, P., Ripl, W., 2012. Evapotranspiration – A driving force in landscape sustainability. In: Irmak, A. (Ed.): Evapotranspiration - Remote Sensing and Modelling. IntechOpen. https://doi.org/10.5772/19441
  7. Ellison, D., Pokorný, J., Wild, M., 2024. Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Global Change Biology, 30, e17195. https://doi.org/10.1111/gcb.17195
  8. Ent, R.J. van der, Savenije, H.H.G., Schaei, B., Steele-Dunne, S.C., 2010. Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525. https://doi.org/10.1029/2010WR009127
  9. Ent, R.J. van der, Wang-Erlandsson L., Keys, P.W., Savenije, H.H.G., 2014. Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling. Earth Syst. Dynam., 5, 471–489.
  10. Fatichi, S., 2009. Mann-Kendall Test. MATLAB Central File Exchange. [online] Available at: https://www.mathworks.com/matlabcentral/fileexchange/25531-mann-kendall-test [Accessed: 16 Feb. 2024]
  11. Fernández-Alvarez, J.C., Pérez-Alarcón, A., Eiras-Barca, J. et al., 2023. Projected changes in atmospheric moisture transport contributions associated with climate warming in the North Atlantic. Nat Commun, 14, 6476. https://doi.org/10.1038/s41467-023-41915-1
  12. Haghighi, E., Short Gianotti, D.J., Akbar, R., Salvucci, G.D., Entekhabi, D., 2018. Soil and atmospheric controls on the land surface energy balance: A generalized framework for distinguishing moisture-limited and energy-limited evaporation regimes. Water Resources Research, 54, 1831–1851. https://doi.org/10.1002/2017WR021729
  13. Hurina, H., Pokorný, J., 2016. The role of water and vegetation in the distribution of solar energy and local climate: a review. Folia Geobotanica, 51, 191–208.
  14. de Jager, A.L., Vogt, J.V., 2010. Development and demonstration of a structured hydrological feature coding system for Europe. Hydrological Sciences Journal, 55, 5, 661–675. https://doi.org/10.1080/02626667.2010.490786
  15. Jung, M., Reichstein, M., Ciais, P. et al., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951–954. https://doi.org/10.1038/nature09396
  16. Kravcik, M., Pokorny, J., Kohutiar, J., Kovac, M., Tóth, E., 2007. Water for the Recovery of the Climate. A New Water Paradigm. People and Water NGO, Kosice, Slovakia.
  17. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 3, 259–263 (June 2006). https://doi.org/10.1127/0941-2948/2006/0130
  18. Lin, H., Li, Y., Zhao, L., 2022. Partitioning of sensible and latent heat fluxes in different vegetation types and their spatiotemporal variations based on 203 FLUXNET sites. Journal of Geophysical Research: Atmospheres, 127, e2022JD037142. https://doi.org/10.1029/2022JD037142
  19. Kendall, M.G., 1975. Rank Correlation Methods. 4th Ed. Charles Griffin, London.
  20. Kleidon, A., Renner, M., 2013. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications, Hydrol. Earth Syst. Sci., 17, 2873–2892. https://doi.org/10.5194/hess-17-2873-2013
  21. Ma, N., Szilagyi, J., Zhang, Y., 2021. Calibration-free complementary relationship estimates terrestrial evapotranspiration globally. Water Resources Research, 57, e2021WR029691. https://doi.org/10.1029/2021WR029691
  22. Makarieva, A.M., Gorshkov V.G., Sheil, D., Nobre, A.D., Bunyard, P., Li, B.L., 2014. Why Does Air Passage over Forest Yield More Rain? Examining the Coupling between Rainfall, Pressure, and Atmospheric Moisture Content, Journal of Hydrometeorology, American Meteorological Society. DOI: https://doi.org/10.1175/JHM-D-12-0190.1
  23. Makarieva, A.M., Nefiodov, A.V., Nobre, A.D., Sheil, D., Nobre, P., Pokorný, J., Hesslerová, P., Li, B.L., 2022. Vegetation impact on atmospheric moisture transport under increasing land-ocean temperature contrasts. Heliyon 8 (2022) e11173. https://doi.org/10.1016/j.heliyon.2022.e11173
  24. Muñoz-Sabater, J., 2019. ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.68d2bb30 Downloaded: 2024 02 21.
  25. Pinke, Z., Decsi, B., Jámbor, A., Kardos, A.K., Kern, Z., Kozma, Z., Ács, T., 2022. Climate change and modernization drive structural realignments in European grain production. Nature Portfolio, Scientific Reports, 12, 7374(2022). https://doi.org/10.1038/s41598-022-10670-6
  26. Pokorny, J., 2019. Evapotranspiration. In: Encyclopedia of Ecology. Elsevier. pp. 292-303. https://doi.org/10.1016/B978-0-12-409548-9.11182-0
  27. Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev.,100, 81–92.
  28. Putnam, A., Broecker, W., 2017. Human-induced changes in the distribution of rainfall. Science Advances., 3. https://doi.org/10.1126/sciadv.1600871
  29. Ripl, W., 2003. Water, the bloodstream of the biosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1440, pp. 1921–1934.
  30. Savenije, H.G., Hrachowitz, M., 2017. HESS Opinions “Catchments as meta-organisms – a new blueprint for hydrological modelling”. Hydrol. Earth Syst. Sci., 21, 1107–1116. https://doi.org/10.5194/hess-21-1107-2017
  31. Sterling, S.M., Ducharne, A., Polcher, J., 2013. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, April 2013. https://doi.org/10.1038/nclimate1690
  32. Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189–190, 115–117. https://doi.org/10.1016/j.agrformet.2014.01.011
  33. Schumacher, D.L., Keune, J., Dirmeyer, P. et al. 2022. Drought self-propagation in drylands due to land–atmosphere feedbacks. Nat. Geosci., 15, 262–268. https://doi.org/10.1038/s41561-022-00912-7
  34. Spracklen, D.V., Coelho, C.H.S., 2023. Modelling early warning signs of possible Amazon Forest dieback. Sci. Adv., 9, 40. https://doi.org/10.1126/sciadv.adk5670
  35. Stojanovic, M., Drumond, A., Nieto, R., Gimeno, L., 2017: Moisture Transport Anomalies over the Danube River Basin during Two Drought Events: A Lagrangian Analysis. Atmosphere, 8, 193. https://doi.org/10.3390/atmos8100193
  36. Sušnik, J., Masia, S., Kravčík, M., Pokorný, J., Hesslerová, P., 2022. Costs and benefits of landscape-based water retention measures as nature-based solutions to mitigating climate impacts in eastern Germany, Czech Republic, and Slovakia. Land Degradation & Development, 33, 16, 3074–3087. https://doi.org/10.1002/ldr.4373
  37. Szilágyi, J., 2021. On the thermodynamic foundations of the complementary relationship of evaporation. Journal of Hydrology, 593, 125916. https://doi.org/10.1016/j.jhydrol.2020.125916
  38. Szilagyi, J., Kovács, Á., 2011. A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modelling. J. Hydrol. Hydromech., 59, 118–130. https://doi.org/10.2478/v10098-011-0010-z
  39. Tetens, O., 1930. Über einige meteorologische Begriffe (On some meteorological terms). Z. Geophys., 6, 297–309.
  40. te Wierik, S.A., Cammeraat, E.L.H., Gupta, J., Artzy-Randrup, Y.A., 2021. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resources Research, 57, e2020WR029234. https://doi.org/10.1029/2020WR029234
  41. WMO, 2017. Guidelines on the Calculation of Climate Normals. WMO-No. 1203. WMO, Geneva, Switzerland, 29 p.
  42. Zhang, Y., Peña-Arancibia1, J.L., McVicar, T.R., Chiew, F.H.S., Vaze, J., Pan, M., 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6, 19124. https://doi.org/10.1038/srep19124
  43. Xie, Z., Yao, Y., Tang, O., Liu, M., Fisher, J.B., Chen J., Zhan, X., Jia, K., Li, Y., Shang, K., Jiang, B., Yang, J., Yu, Zhang, X. R., Guo, X., Liu, L., Nin, J., Fan, J., Zhang, L., 2024. Evaluation of seven satellite-based and two reanalysis global terrestrial evapotranspiration products. Journal of Hydrology, 630, 130649. https://doi.org/10.1016/j.jhydrol.2024.130649
  44. Xu, X., Zhang, X., Riley, W.J., Xue, Y., Nobre, A., Lovejoy, T.E., Jia, G., 2022. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett., 17, 034037. https://doi.org/10.1088/1748-9326/ac4c1d
DOI: https://doi.org/10.2478/johh-2025-0001 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 24 - 33
Submitted on: Jul 17, 2024
|
Accepted on: Nov 30, 2024
|
Published on: Mar 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 László Báder, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.