References
- Alghamdi, A.G., Alkhasha, A., Ibrahim, H.M., 2020. Effect of biochar particle size on water retention and availability in a sandy loam soil. Journal of Saudi Chemical Society, 24, 12, 1042–1050.
- Balashov, E., Buchkina, N., Šimanský, V., Horák, J., 2021. Effects of slow and fast pyrolysis biochar on NO emissions and water availability of two soils with high water-filled pore space. Journal of Hydrology and Hydromechanics, 69, 4, 467–474.
- Blanco-Canqui, H., 2017. Biochar and soil physical properties. Soil Science Society of America Journal, 81, 687–711.
- Bhandari, P., 2023. What is Effect Size and Why Does It Matter? (Examples). Scribbr, from https://www.scribbr.com/statistics/effect-size/.
- Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen total. In: Page, A.L. (Ed.): Methods of Soil Analysis. Part II, Chemical and Microbiological Methods. American Society of Agronomy and Soil Science Society of America, Madison, 9, pp. 595–624.
- Brockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R., Davis, D.D., 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J., 102, 1627–1631.
- Buss, W., 2016. Contaminant Issues in Production and Application of Biochar. Chapter 6: Composition of PAHs in Biochar and Implications for Recommendations for Biochar Production. PhD Thesis. University of Edinburgh, Edinburgh, UK.
- Buss, W., Graham, M.C., MacKinnon, G., Mašek, O., 2016. Strategies for producing biochars with minimum PAH contamination. Journal of Analytical and Applied Pyrolysis, 119, 24–30.
- Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., Vityakon, P., 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237–238, 105–116.
- Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. Routledge Academic, New York, NY.
- Comegna, A., Belviso, C., Rivelli, A.R., Coppola, A., Dragonetti, G., Sobhani, A., Lovelli, S., 2023. Analysis of critical water flow and solute transport parameters in different soils mixed with a synthetic zeolite. Catena, 228, 107150.
- Crombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A., 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy, 5, 122–131.
- Cullotta, S., Bagarello, V., Baiamonte, G., Gugliuzza, G., Iovino, M., La Mela Veca, D.S., Maetzke, F., Palmeri, V., Sferlazza, S., 2016. Comparing different methods to determine soil physical quality in a Mediterranean forest and pasture land. Soil Sci. Soc. Am. J., 80, 1038–1056.
- Devereux, R.C., Sturrock, C.J., Mooney, S.J., 2012. The effects of biochar on soil physical properties and winter wheat growth. Earth Environ. Sci. Trans. R. Soc. Edinb., 103, 13–18.
- Dokoohaki, H., Miguez, F.E., Laird, D., Horton, R., Basso, A.S., 2017. Assessing the biochar effects on selected physical properties of a sandy soil: an analytical approach. Communications in Soil Science and Plant Analysis, 48, 12, 1387–1398.
- Duarte, S.D.J., Glaser, B., Cerri, C.E.P., 2019. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy, 9, 165.
- Edeh, I.G., Mašek, O., 2021. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 73, e13138.
- Faul, F., Erdfelder, E., Buchner, A., Lang, A.G., 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.
- Fér, M., Kodešová, R., Hroníková, S., Nikodem, A., 2020. The effect of 12-year ecological farming on the soil hydraulic properties and repellency index. Biologia, 75, 799–807.
- Fouladidorhani, M., Lamandé, M., Moitzi, G., Nawaz, M.M., Nazari, M., Wagentristl, H., Arthur, E., 2023. Subsoil compaction impacts soil quality indicators in a Calcaric Chernozem. In: EGU General Assembly Abstracts, EGU-9118.
- Gamage, D.N., Mapa, R.B., Dharmakeerthi, R.S., Biswas, A., 2016. Effect of rice husk biochar on selected soil properties in tropical Alfisols. Soil Res., 54, 302–310.
- Githinji, L., 2013. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60, 457–470.
- Gluba, Ł., Rafalska-Przysucha, A., Szewczak, K., Łukowski, M., Szlazak, R., Vitková, J., Kobyłecki, R., Bis, Z., Wichlinski, M., Zarzycki, R., et al., 2021. Effect of fine size-fractionated sunflower husk biochar on water retention properties of arable sandy soil. Materials, 14, 1335.
- Grissom, R., Kim, J., 2005. Effect Sizes for Research: A Broad Practical Approach. Lawrence Erlbaum, New Jersey.
- Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T., Shitumbanuma, V., Cornelissen, G., 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology, 46, 2830–2838.
- Hassan, M., Liu, Y., Naidu, R., Parikh, S.J., Du, J., Qi, F., Willett, I.R., 2020. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 744, 140714.
- Hlaváčiková, H., Novák, V., Kameyama, K., Brezianská, K., Rodný, M., Vitková, J., 2019. Two types of biochars: one made from sugarcane bagasse, other one produced from paper fiber sludge and grain husks and their effects on water retention. Soil and Water Research, 14, 67–75.
- Chen, Ch., Wang, R., Shang, J., Liu, K., Irshad, M.K., Hu, K., Arthur, E., 2018. Effect of biochar application on hydraulic properties of sandy soil under dry and wet conditions. Vadose Zone Journal, 17, 1–8.
- Jeffery, S., Meinders, M.B., Stoof, C.R., Bezemer, T.M., van de Voorde, T.F., Mommer, L., van Groenigen, J.W., 2015. Bio-char application does not improve the soil hydrological function of a sandy soil. Geoderma, 251–252, 47–54.
- Juriga, M., Aydın, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Šimanský, V., 2021. The importance of initial application and reapplication of biochar in the context of soil structure improvement. Journal of Hydrology and Hydro-mechanics, 69, 1, 87–97.
- Jury, W.A., Gardner, W.R., Gardner, W.H., 1991. Soil Physics. John Wiley & Sons. Inc., New York.
- Kammann, C., Linsel, S., Gößling, J., Koyro, H.W., 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil, 345, 195–210.
- Lim, T.J., Spokas, K.A., Feyereisen, G., Novak, J.M., 2016. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142, 136–144.
- Liu, Z., Dugan, B., Masiello, C.A., Barnes, R.T., Gallagher, M.E., Gonnermann, H., 2016. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. Journal of Hydrology, 533, 461–472.
- Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M., 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE, 12, e0179079.
- Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna Oxisol. Plant Soil, 333, 117–128.
- Mašek, O., Buss, W., Roy-Poirier, A., Lowe, W., Peters, C., Brownsort, P., Sohi, S., 2018. Consistency of biochar properties over time and production scales: A characterisation of standard materials. Journal of Analytical and Applied Pyrolysis, 132, 200–210.
- Mendes, M., Yigit, S., 2013. Comparison of ANOVA-F and ANOM tests with regard to type I error rate and test power. Journal of Statistical Computation and Simulation, 83, 11, 2093–2104.
- Meng, Q., Zhao, S., Geng, R., Zhao, Y., Wang, Y., Yu, F., Ma, X., 2021. Does biochar application enhance soil salinization risk in black soil of northeast China (a laboratory incubation experiment)? Archives of Agronomy and Soil Science, 67, 11, 1566–1577.
- Minhal, F., Ma’as, A., Hanudin E., Sudira, P., 2020. Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application. Soil Water Res., 15, 93–100.
- Mollinedo, J., Schumacher, T.E., Chintala, R., 2015. Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. Journal of Analytical and Applied Pyrolysis, 114, 100–108.
- Ndede, E.O., Kurebito, S., Idowu, O., Tokunari, T., Jindo, K., 2022. The potential of biochar to enhance the water retention properties of sandy agricultural soils. Agronomy, 12, 311.
- Novák, V., Hlaváčiková, H., 2019. Applied Soil Hydrology; Theory and Applications of Transport in Porous Media. Springer International Publishing, Cham, Switzerland. ISBN 978-3-030-01805-4.
- Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till-age Res., 155, 35–44.
- Reynolds, W.D., Elrick, D.E., Youngs, E.G., Booltink, H.W.G., Bouma, J., 2002. Laboratory methods. In: Dane, J.G., Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4: Physical Methods. American Society of Agronomy and Soil Science Society of America, Madison, pp. 802–816.
- Seyedsadr, S., Šípek, V., Jačka, L., Sněhota, M., Beesley, L., Pohořelý, M., Kovář, M., Trakal, L., 2022. Biochar considerably increases the easily available water and nutrient content in low-organic soils amended with compost and manure. Chemosphere, 293, 133586.
- Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R., 2010. A review of biochar and its use and function in soil. Adv. Agron., 105, 47–82.
- Sorrenti, G., Toselli, M., 2016. Soil leaching as affected by the amendment with biochar and compost. Agric. Ecosyst. Environ., 226, 56–64.
- STN EN ISO 11274, 2014. Soil quality. Determination of the water-retention characteristic. Laboratory methods (ISO 11274: 1998 + Cor 1: 2009).
- Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Yang, L., 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578.
- Šurda, P., Vitková, J., 2016. Impact of biochar application on soil moisture dynamics and saturated hydraulic conductivity. In: Proc. Conf. Water, resources, forest, marine and ocean ecosystems, Vol. I. pp. 445–451. ISSN 1314-2704.
- Šútor, J., Rehák, Š., 1999. Quantification of the water storage in the soil aeration zone of the Žitný ostrov. Geografický časopis, 51, 61–75. (In Slovak.)
- Tan, Z., Lin, C.S., Ji, X., Rainey, T.J., 2017. Returning biochar to fields: A review. Applied Soil Ecology, 116, 1–11.
- Thompson, B., 2007. Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychol. Sch., 44, 423–432. DOI: 10.1002/pits.20234
- Trifunovic, B., Gonzales, H.B., Ravi, S., Sharratt, B.S., Mohanty, S.K., 2018. Dynamic effects of biochar concentration and particle size on hydraulic properties of sand. Land Degrad. Dev., 29, 884–893.
- Usowicz, B., Lipiec, J., Lukowski, M., Marczewski, W., Usowicz, J., 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res., 164, 45–51.
- Uzoma, K.C., Inoue, M., Andry, H., Zahoor, A., Nishihara, E., 2011. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 9, 1137–1143.
- Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.
- van Zwieten, L., Singh, B.P., Joseph, S., Kimber, S., Cowie, A., Chan, K.Y., 2009. Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann, J., Joseph, S. (Eds): Biochar for Environmental Management: Science and Technology. Earthscan, London, pp. 227–249.
- Verheijen, F.G., Zhuravel, A., Silva, F.C., Amaro, A., Ben-Hur, M., Keizer, J. J., 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs. sandy loam soil in a column experiment. Geoderma, 347, 194–202.
- Vitková, J., Gaduš, J., Skic, K., Boguta, P., Giertl, T., 2019. Impact of grapevine biochar on some hydro-physical characteristics of silt loam soil – laboratory measurements. Acta Hydrologica Slovaca, 20, 166–171.
- Vitková, J., Kondrlová, E., Rodný, M., Šurda, P., Horák, J., 2017. Analysis of soil water content and crop yield after biochar application in field conditions. Plant, Soil and Environment, 63, 569–573.
- Vitková, J., Šurda, P., Botková, N., Toková, L., Rončák, P., Botyanszká, L., Gaduš, J., 2022. How can biochar protect agricultural land for agroutourism from drought caused by climate change? In: Proceedings of the 13th Conference Public recreation and landscape protection with environment hand in hand. Mendel University in Brno, Brno, pp. 166–170. ISBN 978-80-7509-830-6.
- Weidemann, E., Buss, W., Edo, M., Mašek, O., Jansson, S., 2018. Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar a screening study. Environmental Science and Pollution Research, 25, 3933–3940.
- Yanik, J., Stahl, R., Troeger, N., Sinag, A., 2013. Pyrolysis of algal biomass. Journal of Analytical and Applied Pyrolysis, 103, 134–141.
- Zhao, J., Ren, T., Zhang, Q., Du, Z., Wang, Y., 2016. Effects of biochar amendment on soil thermal properties in the North China Plain. Soil Sci. Soc. Am. J., 80, 1157–1166.
- Zhao, L., Cao, X., Mašek, O., Zimmerman, A., 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256, 1–9.
- Zimmerman, A., 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Tech., 44, 1295–1301.