Have a personal or library account? Click to login
Effects of the application of biochar on the soil erosion of plots of sloping agricultural and with silt loam soil Cover

Effects of the application of biochar on the soil erosion of plots of sloping agricultural and with silt loam soil

Open Access
|Nov 2023

References

  1. Abrantes, J.R., Simões, N.E., de Lima, J.L., Montenegro, A.A., 2021. Two-dimensional (2D) numerical modelling of rainfall induced overland flow, infiltration and soil erosion: comparison with laboratory rainfall-runoff simulations on a two-directional slope soil flume. Journal of Hydrology and Hydromechanics, 69, 2, 140–150.
  2. Alewell, Ch., Borrelli, P., Meusburger, K., Panagos, P., 2019. Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7, 3, 203–225. DOI: 10.1016/j.iswcr.2019.05.004
  3. Antal, J., Streďanský, J., Streďanská, A., Tátošová, L., Lackóová, L., 2013. Ochrana a zúrodňovanie pôdy (Soil protection and fertilisation). Slovak University of Agriculture, Nitra, 206 p.
  4. Ataallah, K., Nikolaus, K.J., Lars, E., Yaxian, H., Bo, I.V., Goswin, H., 2019. Short-term effects of biochar application on soil loss during a rainfall-runoff simulation. Soil Science, 184, 17–24.
  5. Atanassova, I., Harizanova, M., Benkova, M., Doerr, S., 2022. Changes in organic molecular marker signatures in soils amended with biochar during a three-year experiment with maize on a Fluvisol. Journal of Hydrology and Hydromechanics, 70, 4, 401–409.
  6. Avwunudiogba, A., Hudson, P.F., 2014. A review of soil erosion models with special reference to the needs of humid tropical mountainous environments. European Journal of Sustainable Development, 3, 4, 299–310. https://doi.org/10.14207/ejsd.2014.v3n4p299
  7. Aydin, E., Antal, J., 2019. Integrovaný manažment povodia poľnohospodársky využívanej krajiny (Integrated river basin management of agricultural landscapes). Slovak University of Agriculture, Nitra, 177 p.
  8. Batista, P.V.G., Davies, J., Silva, M.L.N., Quinton, J.N., 2019. On the evaluation of soil erosion models: Are we doing enough? Earth-Science Reviews, 197, 102898. DOI: 10.1016/j.earscirev.2019.102898
  9. Biederman, L.A., Harpole, W.S., 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5, 2, 202–214.
  10. Borrelli, P., Alewell, Ch., Alvarez, P., Anache, J.A.A., Baartman, J., Ballabio, C., et al., 2021. Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 780, 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
  11. Cai, W., Huang, H., Chen, P., Huang, X., Gaurav, S., Pan, Z., Lin, P., 2020. Effects of biochar from invasive weed on soil erosion under varying compaction and slope conditions: comprehensive study using flume experiments. Biomass Conversion and Biorefinery, 2020. https://doi.org/10.1007/s13399-020-00943-3
  12. Campbell, G.S., 1985. Soil Physics with Basic: Transport Models for Soil-Plant Systems. Elsevier, 150 p.
  13. Che, Q., Li, M., Zhang, Z., 2021. Effects of biochar application on soil organic carbon in degraded saline-sodic wetlands of Songnen Plain, Northeast China. Chin. Geogr. Sci., 31, 877–887. https://doi.org/10.1007/s11769-021-1232-6
  14. Chen, T., Zhou, Z., Xu, S., Wang, H., Lu, W., 2015. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresource Technology, 190, 388–394.
  15. Esmaeelnejad, L., Shorafa, M., Gorji, M., Hosseini, S.M., 2017. Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study. Communications in Soil Science and Plant Analysis, 48, 14, 1710–1718.
  16. Földes, G., Labat, M.M., Kohnová, S., Hlavčová, K., 2022. Impact of changes in short-term rainfall on design floods: Case study of the Hnilec River Basin, Slovakia. Slovak Journal of Civil Engineering, 30, 1, 68–74.
  17. Gholamahmadi, B., Jeffery, S., Gonzalez-Pelayo, O., Prats, S.A., Bastos, A.C., Keizer, J.J., Verheijen, F.G., 2023. Biochar impacts on runoff and soil erosion by water: A systematic global scale meta-analysis. Science of the Total Environment, 871, 161860.
  18. Guo, Y., Peng, Ch., Zhu, Q., Wang, M., Wang, H., Peng, S., He, H., 2019. Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management, 250, 109403. https://doi.org/10.1016/j.jenvman.2019.109403
  19. Hlaváčiková, H., Novák, V., Kameyama, K., Brezianská, K., Rodný, M., Vitková, J., 2019. Two types of biochars: one made from sugarcane bagasse, other one produced from paper fiber sludge and grain husks and their effects on water retention. Soil and Water Research, 14, 2, 67–75.
  20. Hlavčová, K., Danáčová, M., Kohnová, S., Szolgay, J., Valent, P., Výleta, R., 2019. Estimating the effectiveness of crop management on reducing flood risk and sediment transport on hilly agricultural land – A Myjava case study, Slovakia. Catena, 172, 678–690.
  21. Holz, D.J., Williard, K.W.J., Edwards, P.J., Schoonover, J.E., 2015. Soil Erosion in Humid Regions: A Review. J. Contemp. Water Res. Educ., 154, 1, 48–59.
  22. Horák, J., Šimanský, V., Igaz, D., 2019. Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam Haplic Luvisol. J. of Ecol. Eng., 20, 31–38.
  23. Hseu, Z., Jien, S., Chien, W., Liou, R., 2014. Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil. The Scientific World Journal, 2014, Article ID: 602197.
  24. Igaz, D., Kondrlová, E., Horák, J., Čimo, J., Tárník, A., Bárek, V., 2017. Základné merania v hydropedológii (Basic measurements in hydropedology). Slovak University of Agriculture, Nitra, Slovakia.
  25. Igwe, P.U., Onuigbo, A.A., Chinedu, O.C., Ezeaku, I.I., Muoneke, M.M., 2017. Soil erosion: A review of models and applications. International Journal of Advanced Engineering Research and Science, 4, 12, 138–150. https://doi.org/10.22161/ijaers.4.12.22.
  26. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  27. Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., Van Groenigen, J.W., Hungate, B.A., Verheijen, F., 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12, 5, 053001.
  28. Jenčo, M., Fulajtár, E., Bobáľová, H., Matečný, I., Saksa, M., Kožuch, M., Oršulová, V., 2020. Mapping soil degradation on arable land with aerial photography and erosion models, case study from Danube Lowland, Slovakia. Remote Sensing, 12, 24, 4047.
  29. Jetten, V., Govers, G., Hessel, R., 2003. Erosion models: quality of spatial predictions. Hydrol. Process., 17, 5, 887–900. https://doi.org/10.1002/hyp.1168
  30. Jien, S., Wang, Ch., 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.
  31. Juriga, M., Aydin, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Balashov, E.V., Šimanský, V., 2021. The importance of initial application and reapplication of biochar in the context of soil structure improvement. Journal of Hydrology and Hydromechanics, 69, 1, 87–97.
  32. Lee, S.S., Shah, H.S., Awad, Y.M., Kumar, S., Ok, Y.S., 2015. Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environmental Earth Sciences, 74, 2463–2473.
  33. Li, Y., Zhang, F., Yang, M., Zhang, J., 2019. Effects of adding biochar of different particle sizes on hydro-erosional processes in small scale laboratory rainfall experiments on cultivated loessial soil. Catena, 173, 226–233.
  34. Li, Z., Gu, C., Zhang, R., Ibrahim, M., Zhang, G., Wang, L., Zhang, R., Chen, F., Liu, Y., 2017. The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China. Agric. Water Manag., 185, 145–150.
  35. Lim, T.J., Spokas, K.A., Feyereisen, G., Novak, J.M., 2016. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142, 136–144.
  36. Masiello, C.A., Dugan, B., Brewer, C.E., Spokas, K.A., Novak, J.M., Liu, Z., Sorrenti, G., 2015. Biochar effect on soil hydrology. In: Lehmann, J., Joseph, S. (Eds): Biochar for Environmental Management: Science, Technology and Implementation, 2nd Ed. Taylor & Francis, London, pp. 543–563.
  37. Mollinedo, J., Schumacher, T.E., Chintala, R., 2015. Influence of feedstocks and pyrolysis on biochar´s capacity to modify soil water retention characteristics. Journal of Analytical and Applied Pyrolysis, 114, 100–108.
  38. Ndor, E., Amana, S.M., Asadu, C.L.A., 2015. Effect of biochar on soil properties and organic carbon sink in degraded soil of Southern Guinea Savanna Zone, Nigeria. International Journal of Plant & Soil Science, 4, 252–258.
  39. Németová, Z., Honek, D., Kohnová, S., Hlavčová, K., Šulc Michalková, M., Sočuvka, V., Velísková, Y., 2020. Validation of the EROSION-3D model through measured bathymetric sediments. Water, 12, 4, 1082. https://doi.org/10.3390/w12041082
  40. Németová, Z., Kohnová, S., 2021. Mathematical modeling of soil erosion processes using a physically-based and empirical models: Case study of Slovakia and central Poland. Acta Hydrologica Slovaca, 22, 1, 147–155.
  41. Pandey, A., Himanshu, S.K., Mishra, S.K., Singh, V.P., 2016. Physically based soil erosion and sediment yield models revisited. Catena, 147, 595–620. https://doi.org/10.1016/j.catena.2016.08.002
  42. Petrikovičová, L., Rampašeková, Z., Sobocká, J., 2020. A detailed identification of erosionally endangered agricultural land in Slovakia (Case study of Nitra Upland). Sustainability, 12, 12, 4863.
  43. Rattayova, V., Hlavčová, K., Labat, M.M., Kohnová, S., 2019. Comparison of the Curve Number Method (SCS-CN) modifications and the application of measures for soil erosion reduction and flood protection in small ungauged catchments in the White Carpathian Mountains in Slovakia. In: IOP Conference Series: Earth and Environmental Science, 362, 1, 012084.
  44. Rattayova, V., Garaj, M., Hlavčová, K., 2022. Spatial and temporal variability of aridity index in lowland areas of Slovakia. Acta Hydrologica Slovaca, 23, 2, 273–281.
  45. Rončák, P., Šurda, P., Vitková, J., 2021. Analysis of a topsoil moisture regime through an effective precipitation index for the locality of Nitra, Slovakia. Slovak Journal of Civil Engineering, 29, 1, 9–14.
  46. Sadeghi, S.H., Hazbavi, Z., Harchegani, M.K., 2016. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar. Science of the Total Environment, 541, 483–490. Salumbo, A., 2020. A review of soil erosion estimation methods. Agricultural Sciences, 11, 8, 667–691. https://doi.org/10.4236/as.2020.118043
  47. Schmidt, J., 1991. A mathematical model to simulate rainfall erosion. Catena, 19, 101–109.
  48. Schmidt, J. (Ed.), 2000. Soil Erosion. Application of Physically Based Models. 1st Ed. Springer, Berlin, Heidelberg.
  49. Schroder, A., 2000. WEPP, EUROSEM, E-2D: Results of applications at the plot scale. In: Schmidt, J. (Ed.), 2000. Soil Erosion. Application of Physically Based Models. 1st Ed. Springer, Berlin, Heidelberg, pp. 199–250.
  50. Singh, M., Yousuf, A., Singh, H., Singh, S., Hartsch, K., Werner, M. von et al., 2022. Simulation accuracy of EROSION-3D model for estimation of runoff and sediment yield from micro-watersheds. Water, 14, 3, 280. https://doi.org/10.3390/w14030280
  51. Šiška, B., Špánik, F., Repa, Š., Gálik, M., 2005. Praktická biometeorológia (Practical biometeorology). Slovak University of Agriculture, Nitra, Slovakia, 190 p. ISBN 80-8069-486-9
  52. Starkloff, T., Stolte, J., 2014. Applied comparison of the erosion risk models EROSION 3D and LISEM for a small catchment in Norway. Catena, 118, 154–167. https://doi.org/10.1016/j.catena.2014.02.004
  53. Sun, F., Li, S., 2014. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177, 26–33.
  54. Toková, L., Igaz, D., Horák, J., Aydin, E., 2020. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10, 7, 1005.
  55. Tomaščík, M., Németová, Z., Danáčová, M., 2021. Analysis of factors influencing the intensity of soil water erosion. Acta Hydrologica Slovaca, 22, 1, 70–77.
  56. Vitková, J., Kondrlová, E., Rodný, M., Šurda, P., Horák, J., 2017. Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil and Environment, 63, 569–573.
  57. Von Werner, M., 2006. Erosion-3D: User Manual. Version 3.1.1. Michael von Werner, Berlin, Germany, 54 p.
  58. Wani, I., Narde, S.R., Huang, X., Remya, N., Kushvaha, V., Garg, A., 2023. Reviewing role of biochar in controlling soil erosion and considering future aspect of production using microwave pyrolysis process for the same. Biomass Conversion and Biorefinery, 13, 11543–11569.
DOI: https://doi.org/10.2478/johh-2023-0026 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 356 - 368
Submitted on: Feb 28, 2023
Accepted on: Aug 15, 2023
Published on: Nov 14, 2023
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Peter Rončák, Zuzana Németová, Justína Vitková, Michaela Danáčová, Lucia Toková, Elena Aydin, Peter Valent, David Honek, Dušan Igaz, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.