Have a personal or library account? Click to login
Effects of thermal and hydrophysical properties of sandy Haplic Podzol on actual evapotranspiration of spring wheat Cover

Effects of thermal and hydrophysical properties of sandy Haplic Podzol on actual evapotranspiration of spring wheat

Open Access
|May 2023

Abstract

The objectives of the research were to: (1) assess the strength of relationships between the soil thermal and hydrophysical properties, (2) evaluate the strength of association of evapotranspiration of spring wheat crop with soil thermal and hydrophysical properties, and (3) estimate the ranges of the thermal and hydrophysical properties of the sandy Haplic Podzol during the growing period of spring wheat in 2022. The study included instrumental simultaneous measurements of meteorological data, soil water retention curve, soil moisture content (SMC) and thermal properties. Actual evapotranspiration was calculated according to the Allen equation. Spearman’s rank correlation coefficients showed that the increase in SMC from 0.10 cm3 cm−3 to 0.26 cm3 cm−3 resulted in a significant increase in thermal conductivity (r = 0.81, p < 0.001), volumetric heat capacity (r = 0.93, p < 0.001) and thermal diffusivity (r = 0.94, p < 0.001). Actual evapotranspiration also rose with the increasing SMC (r = 0.91, p < 0.001) and matric water potentials (r = 0.61, p < 0.05). As a consequence of the changes in SMC, the Spearman’s rank correlation coefficients supported the strong positive relationships of actual evapotranspiration with volumetric heat capacity (r = 0.97, p < 0.001), thermal conductivity (r = 0.96, p < 0.001) and thermal diffusivity (r = 0.96, p < 0.001). Pearson correlation coefficients also supported the strong input of thermal inertia to the actual evapotranspiration (r = 0.88, p < 0.01). During the whole period of observations, actual evapotranspiration varied from 0.05 to 0.59 mm hr−1, soil thermal conductivity – from 0.225 to −1.056 W m−1 K−1, volumetric heat capacity – from 1.057 to 1.889 MJ m–3 K−1, heat diffusivity from 0.189 to 0.559 mm2 s−1, and thermal inertia – from 516 to 1412 J m−2 K−1 s−0.5.

DOI: https://doi.org/10.2478/johh-2023-0013 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 125 - 131
Submitted on: Nov 11, 2022
Accepted on: Mar 6, 2023
Published on: May 14, 2023
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Eugene V. Balashov, Aleksei V. Dobrokhotov, Lyudmila V. Kozyreva, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.