Have a personal or library account? Click to login
Influence of polycyclic aromatic hydrocarbons on water storage capacity of two lichens species Cover

Influence of polycyclic aromatic hydrocarbons on water storage capacity of two lichens species

Open Access
|May 2023

References

  1. Agnan, Y., Probst, A., Séjalon-Delmas, N., 2017. Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches: a new bioindication scale for French forested areas. Ecol. Indic., 72, 99–110.
  2. Allen, S.T. et al., 2020. Key questions on the evaporation and transport of intercepted precipitation. In: Van Stan II, J., Gutmann, E., Friesen, J. (Eds.): Precipitation Partitioning by Vegetation: A Global Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_16
  3. Augusto, S., Shukla, V., Upreti, D.K., Paoli, L., Vannini, A., Loppi, S., Nerín, C., Domeno, C., Schuhmacher, M., 2016. Biomonitoring of airborne persistent organic pollutants using lichens. Institutional Research Information System, 2016, 137–175.
  4. Bielczyk, U., 2001. Skala porostowa. Instytut Botaniki im. W. Szafera PAN, Kraków. (In Polish.)
  5. Cecconi, E., Fortuna, L., Benesperi, R., Bianchi, E., Brunialti, G., Contardo, T., Di Nuzzo, L., Frati, L., Monaci, F., Munzi, S., Nascimbene, J., Paoli, L., Ravera, S., Vannini, A., Giordani, P., Loppi, S., Tretiach, M., 2019. New interpretative scales for lichen bioaccumulation data: the Italian proposal. Atmosphere, 10, 3. https://doi.org/10.3390/atmos10030136
  6. Crockford, R.H., Richardson, D.P., 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol. Process, 14, 16, 2903e2920.
  7. Fortuna, L., Tretiach, M., 2018. Effects of site-specific climatic conditions on the radial growth of the lichen biomonitor Xanthoria parietina. Environ. Sci. Pollut. Res., 25, 34017–34026. https://doi.org/10.1007/s11356-018-3155-z
  8. Gauslaa, Y., Goward, T., Asplund, J., 2021. Canopy throughfall links canopy epiphytes to terrestrial vegetation in pristine conifer forests. Fungal Ecology, 52, 101075.
  9. Giordani, P., Malaspina, P., Benesperi, R., Incerti, G., Nascimbene, J., 2019. Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Sci. Total Environ., 666, 22–30. https://doi.org/10.1016/j.scitotenv.2019.02.187
  10. Hawskworth, D.L., Rose, T., 1970. Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature, 227, 145–148.
  11. Keim, R.F., Link, T.E., 2018. Linked spatial variability of throughfall amount and intensity during rainfall in a coniferous forest. Agric. For. Meteorol., 248, 15–21.
  12. Klamerus-Iwan, A., Kozłowski, R., Przybylska, J., Solarz, W., Sikora, W., 2020. Variability of water storage capacity in three lichen species. Biologia, 75, 899–906. https://doi.org/10.2478/s11756-020-00437-7
  13. Klamerus-Iwan, A., Gloor, E., Sadowska-Rociek, A., Błońska, E., Lasota J., Łagan, S., 2018. Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees. Environ. Pollut., 242, 1176–1184.
  14. Kłos, A., Ziembik, Z., Rajfur, M., Dołhańczuk- Śródka, A., Bochenek, Z., Bjerke, J.W., Świsłowski, P., 2018. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci. Total Environ., 627, 438–449. https://doi.org/10.1016/j.scitotenv.2018.01.211
  15. Lasota, J., Łyszczarz, S., Kempf, P., Kempf, M., Błońska, E., 2021. Effect of species composition on polycyclic aromatic hydrocarbon (PAH) accumulation in urban forest soils of Krakow. Water Air Soil Pollut., 232, 74. https://doi.org/10.1007/s11270-021-05043-0
  16. Likus- Cieślik, J., Socha, J., Gruba, P., Pietrzykowski, M., 2020. The current state of environmental pollution with sulfur dioxide (SO2) in Poland based on sulfur concentration in scots pine needles. Environ. Pollut., 258, 113559.
  17. Łubek, A., Kukwa, M., Jaroszewicz, B., Czortek, P., 2018. Changes in the epiphytic lichen biota of Białowieza Primeval Forest are not explained by climate warming. Sci. Total Environ., 643, 468–478. https://doi.org/10.1016/j.scitotenv.2018.06.222
  18. Mendieta-Leiva, G., Porada, P., Bader, M.Y., 2020. Interactions of epiphytes with precipitation partitioning. In: van Stan, J.T., Gut-mann, E.D., Friesen, J. (Eds.): Precipitation Partitioning of Vegetation: A Global Synthesis. Springer, Cham, pp. 133–146. https://doi.org/10.1007/978-3-030-29702-2_9
  19. Nascimbene, J., Benesperi, R., Casazza, G., Chiarucci, A., Giordani, P., 2020. Range shifts of native and invasive trees exacerbate the impact of climate change on epiphyte distribution: the case of lung lichen and black locust in Italy. Sci. Total Environ., 735, 139537. https://doi.org/10.1016/j.scitotenv.2020.139537
  20. Nowak, D.J., Coville, R., Endreny, T., Abdi, R., Van Stan II, J.T., 2020. Valuing urban tree impacts on precipitation partitioning. In: van Stan, J.T., Gutmann, E., Friesen, J. (Eds.): Precipitation Partitioning by Vegetation: A Global Synthesis. Springer, Cham, pp. 253–268.
  21. Osyczka, P., Boroń, P., Lenart-Boroń, A., et al., 2018. Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ. Sci. Pollut. Res., 25, 1950–1961. https://doi.org/10.1007/s11356-017-0639-1
  22. Papierowska, E., Szporak-Wasilewska, S., Szewinska, J., Szatylowicz, J., Debaene, G., Utratna, M., 2018. Contact angle measurements and water drop behavior on leaf surface for several deciduous shrub and tree species from a temperate zone. Trees, 32, 1253–1266. https://doi.org/10.1007/s00468-018-1707-y
  23. Piccotto, M., Tretiach, M., 2010. Photosynthesis in chlorolichens: the influence of the habitat light regime. J. Plant Res., 123, 763–775.
  24. Piccotto, M., Bidussi, M., Tretiach, M., 2011. Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Environ. Experim. Bot., 73, 102–107.
  25. Popek, R., Gawrońska, M., Wrochna, M., Gawroński, S., Sæbø, A., 2013. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes – a 3-year study. Int. J. Phytoremediation, 15, 3. https://doi.org/10.1080/15226514.2012.694498
  26. Porada, P., Weber, B., Elbert, W., Pöschl, U., Kleidon, A., 2013. Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences, 10, 6989–7033. https://doi.org/10.5194/bg-10-6989-2013
  27. Porada, P., Van Stan, J., Kleidon, A., 2018. Significant contribution of nonvascular vegetation to global rainfall interception. Nat. Geosci., 11, 563–567. https://doi.org/10.1038/s41561-018-0176-7
  28. Porada, P., Giordani, P., 2021. Bark water storage plays key role for growth of mediterranean epiphytic lichens. Front. For. Glob. Change, 4. https://doi.org/10.3389/ffgc.2021.668682
  29. Porada, P., Giordani, P., 2022. Do lichens and mosses drink from tree bark? Front. Young Minds., 10, 704022. DOI: 10.3389/frym.2022.704022
  30. R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  31. Rutter, A., Kershaw, K., Robins, P., Morton, A., 1971. A predictive model of rainfall interception in forests. 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol., 9, 367–384.
  32. Sadeghi, S.M.M., Attarod, P., Van Stan, T.G., Pypker, T.G., 2016. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: a comparison of common planted tree species in Tehran, Iran. Sci. Total Environ., 568, 845e855.
  33. Sicard, P., Agathokleous, E., De Marco A., Paoletti E., Calatayud, V., 2021. Urban population exposure to air pollution in Europe over the last decades. Environ. Sci. Eur., 33, 28. https://doi.org/10.1186/s12302-020-00450-2
  34. Sicard, P., Augustaitis, A., Belyazid, S., Calfapietra, C., De Marco, A., 2016. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ. Pollut., 213, 977–987. https://doi.org/10.1016/j.envpol.2016.01.075
  35. Statistica 12.0, 2020. StatSoft Poland Ltd., Kraków, Poland.
  36. Stark, L.R., 2017. Ecology of desiccation tolerance in bryophytes: A conceptual framework and methodology. Bryologist, 120, 130–165. https://doi.org/10.1639/0007-2745-120.2.130
  37. Van Stan II., J.T., Pypker, T.G., 2015. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci. Total Environ., 536, 813–824. https://doi.org/10.1016/j.scitotenv.2015.07.134.
  38. Zarek, M., Lasota, J., Błońska, E., 2020. Effect of gender and age on the accumulation of heavy metals in Taxus baccata L. needles in the City Center of Krakow (Poland). Water Air Soil Pollut., 231, 564. https://doi.org/10.1007/s11270-020-04932-0
DOI: https://doi.org/10.2478/johh-2023-0010 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 139 - 147
Submitted on: Dec 22, 2022
|
Accepted on: Mar 13, 2023
|
Published on: May 14, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Anna Klamerus-Iwan, Rafał Kozłowski, Anna Sadowska-Rociek, Ewa Słowik-Opoka, Dawid Kupka, Paolo Giordani, Philipp Porada, John T. Van Stan, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.