Have a personal or library account? Click to login
Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire Cover

Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire

Open Access
|Nov 2022

References

  1. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. Journal of Hydrology and Hydromechanics, 65, 3, 254–263.10.1515/johh-2017-0009
  2. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, L., 2019. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrological Processes, 33, 4, 661–674.10.1002/hyp.13352
  3. Badía, D., Aguirre, J.A., Martí, C., Márquez, M.A., 2013. Sieving effect on the intensity and persistence of water repellency at different soil depths and soil types from NE-Spain. Catena, 108, 44–49.10.1016/j.catena.2012.02.003
  4. Bagarello, V., Basile, G., Caltabellotta, G., Giordano, G., Iovino, M., 2020. Testing soil water repellency in a Sicilian area two years after a fire. Journal of Agricultural Engineering, 51, 2, 64–72.10.4081/jae.2019.988
  5. Bagarello, V., Caltabellotta, G., Iovino, M., 2022. Manual packing and soil reuse effects on determination of saturated hydraulic conductivity of a loam soil. Geoderma, 405, 115465. https://doi.org/10.1016/j.geoderma.2021.11546510.1016/j.geoderma.2021.115465
  6. Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 1, 105–118.10.1016/0016-7061(93)90103-R
  7. Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A., 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 3, 599–607.10.1016/j.geoderma.2010.11.009
  8. Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–2, 1–18.10.1016/S0016-7061(02)00137-4
  9. Cerdà, A., Doerr, S.H., 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21, 17, 2325–2336.10.1002/hyp.6755
  10. Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 3, 256–263.10.1016/j.catena.2008.03.010
  11. Chen, J., McGuire, K.J., Stewart, R.D., 2020. Effect of soil water-repellent layer depth on post-wildfire hydrological processes. Hydrological Processes, 34, 270–283.10.1002/hyp.13583
  12. de Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: Effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J., 63, 3, 437–442.10.2136/sssaj1999.03615995006300030003x
  13. DeBano, L.F., 1981. Water repellent soils: a state-of-the-art, U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA.
  14. DeBano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol., 231–232, 195–206.10.1016/S0022-1694(00)00194-3
  15. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res., 30, 9, 2507–2517.10.1029/94WR00749
  16. Dekker, L.W., Ritsema, C.J., Oostindie, K., Moore, D., Wesseling, J.G., 2009. Methods for determining soil water repellency on field-moist samples. Water Resour. Res., 45, 4, W00D33.10.1029/2008WR007070
  17. Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water Repellency and Critical Soil Water Content in a Dune Sand. Soil Sci. Soc. Am. J., 65, 6, 1667–1674.10.2136/sssaj2001.1667
  18. Doerr, S.H., 1998. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surface Processes and Landforms, 23, 7, 663–668.10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6
  19. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 1998. Spatial variability of soil hydrophobicity in fire-prone eucalyptus and pine forests, Portugal. Soil Sci., 163, 4, 313–324.10.1097/00010694-199804000-00006
  20. Doerr, S.H., Thomas, A.D., 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J. Hydrol., 231–232, 134–147.10.1016/S0022-1694(00)00190-6
  21. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 1–4, 33–65.10.1016/S0012-8252(00)00011-8
  22. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S., Wallbrink, P.J., 2006. Effects of differing wildfire severities on soil wettability and implications for hydrological response. J. Hydrol., 319, 1–4, 295–311.10.1016/j.jhydrol.2005.06.038
  23. Doerr, S.H., Shakesby, R.A., MacDonald, L.H., 2009. Soil water repellency: A key factor in post-fire erosion. In: Cerda, A., Robichaud, P.R. (Eds.): Fire Effects on Soil and Restoration Strategies. CRC Press, Boca Raton, pp. 197–223.10.1201/9781439843338-c7
  24. Ebel, B.A., Moody, J.A., 2013. Rethinking infiltration in wildfire-affected soils. Hydrological Processes, 27, 10, 1510–1514.10.1002/hyp.9696
  25. Fer, M., Leue, M., Kodesova, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. Journal of Hydrology and Hydromechanics, 64, 2, 111–120.10.1515/johh-2016-0021
  26. Franco, C., Tate, M., Oades, J., 1995. Studies on non-wetting sands. 1. The role of intrinsic particulate organic-matter in the development of water-repellency in non-wetting sands. Soil Research, 33, 2, 253–263.10.1071/SR9950253
  27. Gee, G.W., Or, D., 2002. Particle size analysis. In: Dane, J.H. Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4, Physical Methods. Soils Science Society of America, Madison, WI, pp. 255–293.
  28. Gordillo-Rivero, Á.J., García-Moreno, J., Jordán, A., Zavala, L.M., Granja-Martins, F.M., 2014. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrological Processes, 28, 24, 5832–5843.10.1002/hyp.10072
  29. Hubbert, K.R., Oriol, V., 2005. Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California. International Journal of Wildland Fire, 14, 4, 439–447.10.1071/WF05036
  30. Hunter, A.E., Chau, H.W., Si, B.C., 2011. Impact of tension infiltrometer disc size on measured soil water repellency index. Can. J. Soil Sci., 91, 1, 77–81.10.4141/cjss10033
  31. Hurraß, J., Schaumann, G.E., 2006. Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples. Geoderma, 132, 1, 222–239.10.1016/j.geoderma.2005.05.012
  32. Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 4, 360–368.10.2478/johh-2018-0024
  33. Jiménez-Morillo, N.T., Spangenberg, J.E., Miller, A.Z., Jordán, A., Zavala, L.M., González-Vila, F.J., González-Pérez, J.A., 2017. Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain). Environmental Research, 159, 394–405.10.1016/j.envres.2017.08.02228846861
  34. Johnson, M.S., Lehmann, J., Steenhuis, T.S., Vargem de Oliveira, L., Fernandes, E.C.M., 2005. Spatial and temporal variability of soil water repellency of Amazonian pastures. Soil Research, 43, 3, 319–326.10.1071/SR04097
  35. Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 1, 116–126.10.1071/WF07049
  36. Keizer, J.J., Doerr, S.H., Malvar, M.C., Prats, S.A., Ferreira, R.S.V., Oñate, M.G., Coelho, C.O.A., Ferreira, A.J.D., 2008. Temporal variation in topsoil water repellency in two recently burnt eucalypt stands in north-central Portugal. Catena, 74, 3, 192–204.10.1016/j.catena.2008.01.004
  37. King, P., 1981. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Soil Research, 19, 3, 275–285.10.1071/SR9810275
  38. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 61–65.10.1016/S0022-1694(00)00183-9
  39. Lozano-Baez, S.E., Cooper, M., de Barros Ferraz, S.F., Ribeiro Rodrigues, R., Lassabatere, L., Castellini, M., Di Prima, S., 2020. Assessing water infiltration and soil water repellency in Brazilian Atlantic forest soils. Applied Sciences, 10, 6, 1950.
  40. Ma’shum, M., Farmer, V., 1985. Origin and assessment of water repellency of a sandy South Australian soil. Soil Research, 23, 4, 623–626.10.1071/SR9850623
  41. Madsen, M.D., Zvirzdin, D.L., Petersen, S.L., Hopkins, B.G., Roundy, B.A., Chandler, D.G., 2011. Soil water repellency within a burned Piñon–Juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Sci. Soc. Am. J., 75, 4, 1543–1553.10.2136/sssaj2010.0320
  42. Malvar, M.C., Prats, S.A., Nunes, J.P., Keizer, J.J., 2016. Soil water repellency severity and its spatio-temporal variation in burnt Eucalypt plantations in North-Central Portugal. Land Degrad. Dev., 27, 5, 1463–1478.10.1002/ldr.2450
  43. Mao, J., Nierop, K.G.J., Rietkerk, M., Dekker, S.C., 2015. Predicting soil water repellency using hydrophobic organic compounds and their vegetation origin. Soil, 1, 1, 411–425.10.5194/soil-1-411-2015
  44. McKissock, I., Walker, E.L., Gilkes, R.J., Carter, D.J., 2000. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. J. Hydrol., 231–232, 323–332.10.1016/S0022-1694(00)00204-3
  45. Negri, S., Stanchi, S., Celi, L., Bonifacio, E., 2021. Simulating wildfires with lab-heating experiments: Drivers and mechanisms of water repellency in alpine soils. Geoderma, 402, 115357.10.1016/j.geoderma.2021.115357
  46. Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H. (Eds.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America Inc., Madison, WI, pp. 961–1010.10.2136/sssabookser5.3.c34
  47. Novák, V., Lichner, Ľ., Zhang, B., Kňava, K., 2009. The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia, 63, 3, 483–486.10.2478/s11756-009-0099-2
  48. Oostindie, K., Dekker, L.W., Wesseling, J.G., Geissen, V., Ritsema, C.J., 2016. Impacts of grass removal on wetting and actual water repellency in a sandy soil. Journal of Hydrology and Hydromechanics, 65, 1, 88–98.10.1515/johh-2016-0053
  49. Plaza-Álvarez, P.A., Lucas-Borja, M.E., Sagra, J., Moya, D., Alfaro-Sánchez, R., González-Romero, J., De las Heras, J., 2018. Changes in soil water repellency after prescribed burnings in three different Mediterranean forest ecosystems. Science of the Total Environment, 644, 247–255.10.1016/j.scitotenv.2018.06.36429981973
  50. Regalado, C.M., Ritter, A., 2005. Characterizing water dependent soil repellency with minimal parameter requirement. Soil Sci. Soc. Am. J., 69, 6, 1955–1966.10.2136/sssaj2005.0060
  51. Rillig, M.C., 2005. A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 5, 395–399.10.1016/j.pedobi.2005.04.004
  52. Robichaud, P.R., Hungerford, R.D., 2000. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology, 231–232, 207–219.10.1016/S0022-1694(00)00195-5
  53. Shirazi, M.A., Boersma, L., 1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J., 48, 1, 142–147.10.2136/sssaj1984.03615995004800010026x
  54. Stoof, C.R., Wesseling, J.G., Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma, 159, 3, 276–285.10.1016/j.geoderma.2010.08.002
  55. Tessler, N., Wittenberg, L., Malkinson, D., Greenbaum, N., 2008. Fire effects and short-term changes in soil water repellency – Mt. Carmel, Israel. Catena, 74, 3, 185–191.10.1016/j.catena.2008.03.002
  56. Tillman, R., Scotter, D., Wallis, M., Clothier, B., 1989. Water repellency and its measurement by using intrinsic sorptivity. Soil Research, 27, 4, 637–644.10.1071/SR9890637
  57. Tinebra, I., Alagna, V., Iovino, M., Bagarello, V., 2019. Comparing different application procedures of the water drop penetration time test to assess soil water repellency in a fire affected Sicilian area. Catena, 177, 41–48.10.1016/j.catena.2019.02.005
  58. Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., Awe, G.O., Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019
  59. Wallach, R., Ben-Arie, O., Graber, E.R., 2005. Soil water repellency induced by long-term irrigation with treated sewage effluent. Journal of Environmental Quality, 34, 5, 1910–1920.10.2134/jeq2005.007316151242
  60. Warrick, A.W., 1998. Appendix 1: Spatial variability. In: Hillel, D. (Ed.): Environmental Soil Physics. Academic Press, San Diego, CA, pp. 655–675.10.1016/B978-012348525-0/50026-4
  61. Watson, C.L., Letey, J., 1970. Indices for characterizing soil-water repellency based upon contact angle-surface tension relationships. Soil Sci. Soc. Am. J., 34, 6, 841–844.10.2136/sssaj1970.03615995003400060011x
  62. Zavala, L.M., González, F.A., Jordán, A., 2009. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152, 3, 361–374.10.1016/j.geoderma.2009.07.011
DOI: https://doi.org/10.2478/johh-2022-0031 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 410 - 420
Submitted on: Sep 14, 2022
Accepted on: Oct 12, 2022
Published on: Nov 16, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Gaetano Caltabellotta, Massimo Iovino, Vincenzo Bagarello, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.