Have a personal or library account? Click to login
Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire Cover

Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire

Open Access
|Nov 2022

Abstract

The Mediterranean mixed coniferous and broad-leaved forest of Moarda (Palermo) was affected by a large wildfire in summer 2020. In spring 2021, burned and unburned loam soil sites were sampled and the water drop penetration time (WDPT) and ethanol percentage (EP) tests applied to assess the influence of wetting-drying processes and soil water content on post-fire soil water repellency (SWR) as well as its vertical distribution. According to the WDPT test, the surface layer of the natural unburned soils was severely hydrophobic at intermediate soil water contents roughly corresponding to wilting point and SWR reduced either for very dry conditions (air- or oven-dried conditions) or wetter conditions close to field capacity. For these soils, EP test yielded results in agreement with WDPT. An influence of the wetting/drying cycle was detected as, for a given soil water content, WDPT was generally higher for the drying than the wetting process. The surface of burned soils was always wettable independently of the soil water content. The vertical distribution of SWR was modified by wildfire and the maximum hydrophobicity layer, that was located at the surface of the unburned soils, moved to a depth of 2–4 cm in the soils of burned sites. The results confirmed that wildfire can induce destruction of soil water repellency (SWR) naturally occurring at the surface of forest soils and create a shallow hydrophobic layer that may increase overland flow and erosion risk.

DOI: https://doi.org/10.2478/johh-2022-0031 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 410 - 420
Submitted on: Sep 14, 2022
Accepted on: Oct 12, 2022
Published on: Nov 16, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Gaetano Caltabellotta, Massimo Iovino, Vincenzo Bagarello, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.