Have a personal or library account? Click to login
Heat–induced changes in soil properties: fires as cause for remobilization of chemical elements Cover

Heat–induced changes in soil properties: fires as cause for remobilization of chemical elements

Open Access
|Nov 2022

References

  1. Aasly, K., Malvik, T.H., Myrhaug, E., 2007. Advanced methods to characterize thermal properties of quartz. Infacon, 11.
  2. Abraham, J., Dowling, K., Florentine, S., 2017. Risk of post-fire metal mobilization into surface water resources: A review. Science of the Total Environment, 599–600, 1740–1755.10.1016/j.scitotenv.2017.05.09628535601
  3. Albalasmeh, A.A., Berli, M., Shafer, D.S., Ghezzehei, T.A., 2013. Degradation of moist soil aggregates by rapid temperature rise under low intensity fire. Plant and Soil, 362, 1–2, 335–344. https://doi.org/10.1007/S11104-012-1408-Z/FIGURES/5
  4. Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613–614, 944–957.10.1016/j.scitotenv.2017.09.14428946382
  5. Araya, S.N., Meding, M., Berhe, A.A., 2016. Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. Soil, 2, 3, 351–366. https://doi.org/10.5194/soil-2-351-201610.5194/soil-2-351-2016
  6. Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., Morales, J., 2007. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. European Journal of Soil Science, 58, 1254–1259.10.1111/j.1365-2389.2007.00917.x
  7. Bigham, J.M., Fitzpatrick, R.W., Schulze, D.G., 2002. Iron Oxides. In: Dixon, J.B., Schulze, D.G. (Eds.): Soil Mineralogy with Environmental Applications. Soil Science Society of America Book Ser. 7. SSSA, Madison, WI. pp. 323–366.10.2136/sssabookser7.c10
  8. Bogunovic, M., Vidacek, Z., Racz, Z., Husnjak, S., Spaka, M., 2011. Soil suitability map for cultivation, Republic of Croatia. In: Panagos, P., Jones, A., Bosco, C., Kumar, P.S. (Eds.): European digital archive on soil maps (EuDASM): preserving important soil data for public free access. International Journal of Digital Earth, 4, 5, 434–443.10.1080/17538947.2011.596580
  9. Boski, T., Herbillon, A.J., 1988. Quantitative determination of hematite and goethite in lateritic bauxites by thermodifferential X-ray powder diffraction. Clays and Clay Minerals, 36, 176–180.10.1346/CCMN.1988.0360212
  10. Burke, M.P., Hogue, T.S., Kinoshita, A.M., Barco, J., Wessel, C., Stein, E.D., 2013. Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185, 10131–10145.10.1007/s10661-013-3318-923912423
  11. Busenberg, E., Clemency, C.V., 1973. Determination of the cation exchange capacity of clays and soils using an ammonia electrode. Clays and Clay Minerals, 21, 213–217.10.1346/CCMN.1973.0210403
  12. Campos, I., Abrantes, N., Keizer, J.J., Vale, C., Pereira, P., 2016. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of the Total Environment, 572, 1363–1376.10.1016/j.scitotenv.2016.01.19026875605
  13. Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.10.1007/s00442-004-1788-815688212
  14. Commission report, 2020. Europe’s nature under threat as world suffers worst year on record for forest fires. https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1995
  15. Costa, M.R., Calvão A.R., Aranha, J., 2014. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Applied Geochemistry, 44, 93–102.10.1016/j.apgeochem.2013.09.009
  16. Deng, Y., Dixon, J.B., 2002. Soil organic matter and organicmineral interactions. In: Dixon, J.B., Schulze, D.G. (Eds.): Soil Mineralogy with Environmental Applications. Soil Science Society of America Book Ser. 7. SSSA, Madison, WI. pp. 69–107.10.2136/sssabookser7.c3
  17. Duane, A., Aquilué, N., Canelles, Q., Morán-Ordoñez, A., de Cáceres, M., Brotons, L. 2019. Adapting prescribed burns to future climate change in Mediterranean landscapes. Science of the Total Environment, 677, 68–83. https://doi.org/10.1016/J.SCITOTENV.2019.04.34810.1016/j.scitotenv.2019.04.34831051384
  18. Dupuy, Jl., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal, J., Fernandes, P., 2020. Climate change impact on future wildfire danger and activity in southern Europe: a review. Annals of Forest Science, 77, 2, 1–24. https://doi.org/10.1007/S13595-020-00933-510.1007/s13595-020-00933-5
  19. EN ISO 10693, 2014. Soil quality - Determination of carbonate content - Volumetric method (ISO [WWW Document], n.d. URL https://standards.iteh.ai/catalog/standards/cen/822b8ccb-584d-4cd9-8f31-8cdf923f1406/en-iso-10693-2014
  20. Fernandez-Marcos, M.L., 2022. Potentially toxic substances and associated risks in soils affected by wildfires: A review. Toxics, 10, 1. https://doi.org/10.3390/TOXICS1001003110.3390/toxics10010031877877435051073
  21. Francos, M., Úbeda, X., Pereira, P., Alcañiz, M., 2018. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of the Total Environment, 615, 664–671.10.1016/j.scitotenv.2017.09.31128992493
  22. García-Corona, R., Benito, E., de Blas, E., Varela, M.E., 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire, 13, 195–199.10.1071/WF03068
  23. Gedye, S.J., Jones, R.T., Tinner, W., Ammann, B., Oldfield, F., 2000. The use of mineral magnetism in the reconstruction of fire history: a case study from Lago di Origlio, Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 101–110.10.1016/S0031-0182(00)00178-4
  24. Gehring, A.U., Fischer, H., Louvel, M., Kunze, K., Weidler, P.G., 2009. High temperature stability of natural maghemite: a magnetic and spectroscopic study. Geophysical Journal International, 179, 3, 1361–1371.10.1111/j.1365-246X.2009.04348.x
  25. Gray, D.M., Dighton, J., 2009. Nutrient utilization by pine seedlings and soil microbes in oligotrophic pine barrens forest soils subjected to prescribed fire treatment. Soil Biology and Biochemistry, 41, 1957–1965.10.1016/j.soilbio.2009.06.021
  26. Guo, H., Barnard, A.S., 2013. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. Journal of Materials Chemistry A, 1, 27–42.10.1039/C2TA00523A
  27. Hajpál, M., Török, Á., 2004. Mineralogical and colour changes of quartz sandstones by heat. Environ. Geol., 46, 311–322.10.1007/s00254-004-1034-z
  28. Ignatavičius, G., Sakalauskienë, G., Oškinis, V., 2006. Influence of land fires on increase of heavy metal concentrations in river waters of Lithuania. Journal of Environmental Engineering and Landscape Management, 14, 1, 46–51, DOI: 10.1080/16486897.2006.9636878
  29. Inbar, A., Lado, M., Sternberg, M., Tanau, H., Ben-Hur, M., 2014. Forest fire effects on soil chemical and physiochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221–221, 131–138.10.1016/j.geoderma.2014.01.015
  30. Ivanić, M., Vdović, N., Barreto, S. de B., Bermanec, V., Sondi, I., 2015. Mineralogy, surface properties and electrokinetic behaviour of kaolin clays from the naturally occurring pegmatite deposits. Geologia Croatica, 68, 2, 139–145. https://doi.org/10.4154/GC.2015.0910.4154/GC.2015.09
  31. Kabata-Pendias, A., 2010. Trace Elements in Soils and Plants. 4th Edition, 520 p. https://doi.org/10.1201/B10158/traceelements-soils-plants-alina-kabata-pendias
  32. Kalra, Y.P., 1995. Determination of pH of soils by different methods: collaborative study. Journal of AOAC International, 78, 2, 310–324.10.1093/jaoac/78.2.310
  33. Ketterings, Q.M., Bigham, J.M., Laperche, V., 2000. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Science Society of America Journal, 64, 1108–1117.10.2136/sssaj2000.6431108x
  34. Li, Y., Zhang, Y., Zhang, Y., Liu, M., Zhang, F., Wang, L., 2017. Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. Journal of Thermal Analysis and Calorimetry, 129, 1333–1339.10.1007/s10973-017-6324-2
  35. Liu, X.M., Shaw, J., Jiang, J.Z., Bloemendal, J., Hesse, P., Rolph, T., Mao, X.G., 2010. Analysis on variety and characteristics of maghemite. Science China Earth Sciences, 53, 8, 1153–1162. https://doi.org/10.1007/S11430-010-0030-210.1007/s11430-010-0030-2
  36. Liu, X., Liu, X., Hu, Y., 2015. Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50, 199–209.10.1180/claymin.2015.050.2.04
  37. Mammucari, R., 2008. Processing of iron oxide nanoparticles by supercritical fluids. Industrial and Engineering Chemistry Research, 47, 599–614.10.1021/ie070494+
  38. Marcos, E., Tárrega, R., Luis, E., 2007. Changes in a Humic Cambisol heated (100–500 °C) under laboratory conditions: The significance of heating time. Geoderma, 138, 3–4, 237–243. https://doi.org/10.1016/J.GEODERMA.2006.11.01710.1016/j.geoderma.2006.11.017
  39. Mataix-Solera, J., Zavala, L.M., Jordán, A., Bárcenas-Moreno, G., Lozano, E., Gil-Torres, J., Arcenegui, V., Pérez-Bejarano, A., Morugán-Coronado, A., Jiménez-Pinilla, P., Granged, A.J.P., 2014. Small variations of soil properties control fire-induced water repellency. Spanish Journal of Soil Science, 4, 51–60.10.3232/SJSS.2014.V4.N1.03
  40. Moore, D.M., Reynolds, R.C.Jr., 1997. X-Ray diffraction and the identification and analysis of clay minerals. 2nd Edition, Oxford University Press, New York.
  41. Moreno, J.M., 2014. Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire - affected areas of the world. FUME. Lessons learned and outlook (Available from: http://fumeproject.uclm.es)
  42. Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., Corte-Real, J., 2006. Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31, 85–95.10.3354/cr031085
  43. Namduri, H., Nasrazadani, S., 2008. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 50, 2493–2497.10.1016/j.corsci.2008.06.034
  44. Neary, D.G., Ryan, K.C., Debano, L.F., 2005. Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 250 p.10.2737/RMRS-GTR-42-V4
  45. Nimac, I., Tadić, M.P., 2016. New 1981–2010 climatological normals for Croatia and comparison to previous 1961–1990 and 1971–2000 normals. Proceedings from GeoMLA conference, Beograd, pp. 79–85.
  46. Odigie, K.O., Khanis, E., Hibdon, S.A., Jana, P., Araneda, A., Urrutia, R., Flega, A.R., 2016. Remobilization of trace elements by forest fire in Patagonia, Chile. Regional Environmental Change, 16, 1089–1096.10.1007/s10113-015-0825-y
  47. Palansooriya, K.N., Shaheen, S.M., Chen, S.S., Tsang, D.C.W., Hashimoto, Y., Hou, D., Bolan, N.S., Rinklebe, J., Ok, Y.S., 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134, 105046. https://doi.org/10.1016/J.ENVINT.2019.10504610.1016/j.envint.2019.10504631731004
  48. Pape, A., Switzer, C., McCosh, N., Knapp, C. W., 2015. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, 243–244, 1–9. https://doi.org/10.1016/J.GEODERMA.2014.12.00410.1016/j.geoderma.2014.12.004
  49. Pavlek, K., Bišćević, F., Furčić, P., Grđan, A., Gugić, V., Malešić, N., Moharić, P., Vragović, V., Fuerst-Bjeliš, B., Cvitanović, M., 2016. Spatial patterns and drivers of fire occurrence in a Mediterranean environment: a case study of southern Croatia. Geografisk Tidsskrift – Danish Journal of Geography, 117, 22–35.10.1080/00167223.2016.1266272
  50. Pereira, P., Úbeda, X., 2010. Spatial distribution of heavy metals released from ashes after a wildfire. Journal of Environmental Engineering and Landscape Management, 18, 13–22.10.3846/jeelm.2010.02
  51. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Rein, G., 2019. Fire Effects on Soil Properties. CSIRO Publishing.10.1071/9781486308149
  52. Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P.H., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.10.1039/a807854h11529080
  53. Reynard-Callanan, J.R., Pope, G.A., Gorring, M.L., Feng, H., 2010. Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography, 31, 407–422.10.2747/0272-3646.31.5.407
  54. Ringdalen, E., 2015. Changes in quartz during heating and the possible effects on Si production. JOM, 67, 484–492.10.1007/s11837-014-1149-y
  55. San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Liberta‘, G., Artes Vivancos, T., Jacome Felix Oom, D., Branco, A., De Rigo, D., Ferrari, D., Pfeiffer, H., Grecchi, R., Nuijten, D., 2022. Advance report on wildfires in Europe, Middle East and North Africa 2021. Publications Office of the European Union, Luxembourg. ISBN 978-92-76-49633-5. DOI:10.2760/039729, JRC128678
  56. Santín, C., Doerr, S.H., 2016. Fire effects on soils: the human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 1696. https://doi.org/10.1098/RSTB.2015.017110.1098/rstb.2015.0171487440927216528
  57. Schulze, D.G., 2002. An introduction to soil mineralogy. In: Dixon, J.B., Schulze, D.G. (Eds.): Soil Mineralogy with Environmental Applications. Soil Science Society of America Book Ser. 7. SSSA, Madison, WI. pp. 1–35.10.2136/sssabookser7.c1
  58. Sennett, P., 1989. Changes in the physical properties of kaolin on exposure to elevated temperature. In: Proceedings of the 9th international Clay Conference, Strasbourg, 1989. Vol V: Industrial applications of clays. Analytical techniques and teaching of clay mineralogy. Strasbourg: Institut de Géologie – Université Louis-Pasteur, 1990. pp. 71–79. (Sciences Géologiques. Mémoire, 89).
  59. Sidhu, P.S., 1988. Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner. 36, 31–38. https://doi.org/10.1346/CCMN.1988.036010510.1346/CCMN.1988.0360105
  60. Shepard, F.P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24, 151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D10.1306/D4269774-2B26-11D7-8648000102C1865D
  61. Soto, B., Benito, E., Diaz-Fierros, F., 1991. Heat-induced degradation processes in forest soils. International Journal of Wildland Fire, 1, 3, 147–152. https://doi.org/10.1071/WF991014710.1071/WF9910147
  62. Soto, B., Diaz-Fierros, F., 1993. Interactions between plant ash leachates and soil. International Journal of Wildland Fire, 3, 4, 207–216.10.1071/WF9930207
  63. Šiljković, Ž., Mamut, M., 2016. Forest fires in Dalmatia. Bulletin of Geography. Socio–Economic Series, 32, 117–130.10.1515/bog-2016-0019
  64. Tekić, I., Fuerst-Bjeliš, B., Durbešić, A., 2014. Distribution of Aleppo pine (Pinus halepensis Mill.) and its effect on vegetation and landscape structure of wider area of Šibenik. Šumarski list, 138, 11–12, 593–600. (In Croatian.)
  65. Thomaz, E.L., Fachin, P.A., 2014. Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma, 230–231, 243–249. https://doi.org/10.1016/J.GEODERMA.2014.04.02510.1016/j.geoderma.2014.04.025
  66. Úbeda, X., Pereira, P., Outeiro, L., Martin, D.A., 2009. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development, 20, 589–608.10.1002/ldr.930
  67. Úbeda, X., Sarricolea, P., 2016. Wildfires in Chile: a review. Global and Planetary Change, 146, 152–161.10.1016/j.gloplacha.2016.10.004
  68. Ulery, A.L., Graham, R.C., Bowen, L.H., 1996. Forest fire effects on soil phyllosilicates in California. Soil Science Society of America Journal, 60, 309–315.10.2136/sssaj1996.03615995006000010047x
  69. Ulery, A.L., Graham, R.C., Goforth, B.R., Hubbert, K.R., 2017. Fire effects on cation exchange capacity of California forest and woodland soils. Geoderma, 286, 125–130.10.1016/j.geoderma.2016.10.028
  70. Vassiliadou, I., Papadopoulos, A., Costopoulou, D., Vasiliadou, S., Christoforou, S., Leondiadis, L., 2009. Dioxin contamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere, 74, 879–884.10.1016/j.chemosphere.2008.11.01619101012
  71. Wang, X., Wang, J., Zhang, J., 2012. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS ONE, 7, 8, e44334.10.1371/journal.pone.0044334343212522952957
  72. Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392.10.1086/622910
  73. Yoon, J., Cao, X., Zhou, Q., Ma, L.Q., 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 2–3, 456–464. https://doi.org/10.1016/J.SCITOTENV.2006.01.01610.1016/j.scitotenv.2006.01.01616600337
  74. Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D., He, H., 2012. Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60, 561–573.10.1346/CCMN.2012.0600602
  75. Zobnin, N.N., Torgovets, A.K., Pikalova, I.A., Yussupova, Y.S., Atakishiyev, S.A., 2018. Influence of thermal stability of quartz and the particle size distribution of burden materials on the process of electrothermal smelting of metallurgical silicon. Oriental Journal of Chemistry, 34, 2, 1120–1125. https://doi.org/10.13005/OJC/34026510.13005/ojc/340265
DOI: https://doi.org/10.2478/johh-2022-0024 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 421 - 431
Submitted on: May 7, 2022
Accepted on: Jul 9, 2022
Published on: Nov 16, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Hana Fajković, Maja Ivanić, Ivan Nemet, Sanda Rončević, Štefica Kampić, Dana Leontić Vazdar, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.