References
- Akoko, G., Le, T.H., Gomi, T., Kato, T., 2021. A review of SWAT model application in Africa. Water, 13, 9, 1313.
- Allue, A., 1990. Phytoclimatic Atlas of Spain. Taxonomies. Ministerio de Agricultura, Pesca y Alimentación, Madrid.
- Arekhi, A., Shabani, Rostamizad, G., 2011. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran), Arab. J. Geosci., 5, 6, 1259–1267. DOI: 10.1007/s12517-010-0271-6
- Berteni, F., Dada, A., Grossi, G., 2021. Application of the MUSLE model and potential effects of climate change in a small Alpine catchment in Northern Italy. Water, 13, 2679. https://doi.org/10.3390/w13192679
- Boughton, W.C., 1989. A review of the USDA SCS curve number method. Soil Research, 27, 3, 511–523.10.1071/SR9890511
- Busari, M.A., Kukal, S.S., Kaur, A., Bhatt, R., Dulazi, A.A., 2015. Conservation tillage impacts on soil, crop and the environment. Int. Soil and Water Conserv. Res., 3, 2, 119–129.10.1016/j.iswcr.2015.05.002
- Chiang, S., Chang, C.-H., Chen, W.-B., 2022. Comparison of rainfall-runoff simulation between support vector regression and HEC-HMS for a rural watershed in Taiwan. Water, 14, 2, 191. DOI: 10.3390/w14020191
- Chow, V.T., 1959. Open-Channel Hydraulics. McGraw-Hill Civ. Eng. Ser.
- Cohen, M.J., Shepherd, K.D., Walsh, M.G., 2005. Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma, 124, 3–4, 235–252.10.1016/j.geoderma.2004.05.003
- Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, 2022. Catálogo de la Red de Información Ambiental de Andalucía (REDIAM).https://portalrediam.cica.es/geonetwork/srv/spa/catalog.search#/home(accessed Mar. 23, 2022). Junta de Andalucía.
- Cunge, J.A., 1969. Au sujet d’une méthode de calcul de propagation des crues (Méthode Muskingum). Journal of Hydraulic Research, 7, 2, 205–230.
- Devatha, C.P., Deshpande, V., Renukaprasad, M.S., 2015. Estimation of soil loss using USLE model for Kulhan Watershed, Chattisgarh – A case study. Aquatic Procedia, 4, 1429–1436.10.1016/j.aqpro.2015.02.185
- Djoukbala, O., Hasbaia, M., Benselama, O., Mazour, M., 2019. Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (NW of Algeria). Modeling Earth Systems and Environment, 5, 2, 725–743.10.1007/s40808-018-0562-6
- Đukić, V., Erić, R., 2021. SHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka River catchment (Czech Republic). Water, 13, 6, 872.10.3390/w13060872
- El Aroussi, O., Mesrar, L., El Garouani, A., Lahrach, A., Beaabidaate, L., Akdi, B., Jabrane, R., 2011. Predicting the potential annual soil loss using the revised universal soil loss equation (RUSLE) in the oued El Malleh catchment (Prerif, Morocco). Present Environment and Sustainable Development, 5, 2, 5–15.
- Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S., Aradi, M., 2017. USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment, 3, 3, 873–885.10.1007/s40808-017-0340-x
- European Parlament, 2021. Procedure File: 2021/2548(RSP) | Legislative Observatory.https://oeil.secure.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2021/2548(RSP)&l=en(accessed Mar. 06, 2022).
- Gassman, P.W., Sadeghi, A.M., Srinivasan, R., 2014. Applications of the SWAT model special section: overview and insights. Journal of Environmental Quality, 43, 1, 1–8.10.2134/jeq2013.11.046625602534
- Ghosh, A., Roy, M.B., Roy, P.K. 2022. Analysing LULC change on runoff and sediment yield in urbanizing agricultural watershed of monsoonal climate river basin in West Bengal, India. In: Jana, N.C., Singh, R.B. (Eds.): Climate, Environment and Disaster in Developing Countries. Springer, Singapore, pp. 23–38.
- Gómez-Zotano, J., Alcántara-Manzanares, J., Olmedo-Cobo, J.A., Martínez-Ibarra, E., 2015. La sistematización del clima mediterráneo: identificación, clasificación y caracterización climática de Andalucía (España). Revista de Geografía Norte Grande, 61, 161–180.10.4067/S0718-34022015000200009
- Hara, F., Achab, M., Emran, A., Mahe, G., El Fhel, B., 2018. Estimate the risk of soil erosion using USLE through the development of an Open Source desktop application: DUSLE (Desktop Universal Soil Loss Equation). In: 3rd International Conference on African Large River Basins Hydrology.
- ICONA, 1988. Agresividad de la lluvia en España: Valores del factor R de la ecuación universal de pérdidas de suelo. Ministerio de agricultura. Pesca y alimentation.
- Jaferi, A.D., Jelalkamali, N., Irandoust, M., 2016. Modelling the erosion in the Shahzadeh Abbas basin using HEC-HMS model. Specialty Journal of Agricultural Sciences, 2, 2, 45–52.
- Kinnell, P.I.A., 2005. Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrological Processes, 19, 3, 851–854.10.1002/hyp.5816
- Konečná, J., Karásek, P., Beitlerová, H., Fučík, P., Kapička, J., Podhrázská, J., Kvítek, T., 2019. Using WaTEM/SEDEM and HEC-HMS models for the simulation of episodic hydrological and erosion events in a small agricultural catchment. Soil and Water Research, 15, 1, 18–29.10.17221/202/2018-SWR
- Lamyaa, K., M’bark, A., Brahim, I., Hicham, A., Soraya, M., 2018. Mapping soil erosion risk using RUSLE, GIS, remote sensing methods: a case of mountainous sub-watershed, Ifni Lake and high valley of Tifnoute (High Moroccan Atlas). Journal of Geography, Environment and Earth Science International, 14, 2, 1–11.10.9734/JGEESI/2018/40322
- López, R., Garcia, C., Vericat, D., Batalla, R.J., 2020. Downstream changes of particle entrainment in a hydropeaked river. Sci. Total Environ., 745, 140952. DOI: 10.1016/j.scitotenv.2020.14095232721617
- López-Olmedo, F., 2017. Las series cartográficas: el Mapa Geológico. Ministerio de Ciencia e Innovación.https://open.igme.es/xmlui/handle/20.500.12468/1153
- Lu, J., Zheng, F., Li, G., Bian, F., An, J., 2016. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil and Tillage Research, 161, 79–85.10.1016/j.still.2016.04.002
- McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., Meyer, L.D., 1987. Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASAE, 30, 5, 1387–1396.10.13031/2013.30576
- Mintegui Aguirre, J.Á., Robredo Sánchez, J.C., 1994. Caracterización de las cuencas hidrográficas, objeto de restauración hidrológico-forestal, mediante modelos hidrológicos. Ingeniería del agua, 1, 2, 69–82.10.4995/ia.1994.2637
- Moreno, G., 2008. Response of understorey forage to multiple tree effects in Iberian dehesas. Agriculture, Ecosystems & Environment, 123, 1–3, 239–244.10.1016/j.agee.2007.04.006
- Odongo, V.O., Onyando, J.O., Mutua, B.M., Becht, R., 2013. Sensitivity analysis and calibration of the Modified Universal Soil Loss Equation (MUSLE) for the upper Malewa catchment, Kenya. International Journal of Sediment Research, 28, 3, 368–383.10.1016/S1001-6279(13)60047-5
- OPOCE, 2004. Directive 2004/35/CE of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to the prevention and remedying of environmental damage. Publications Office of the European Union 2, Luxembourg.
- Pak, J., Fleming, M., Scharffenberg, W., Ely, P., 2008. Soil erosion and sediment yield modeling with the hydrologic modeling system (HEC-HMS). In: Proc. World Environmental and Water Resources Congress 2008, Ahupua’A, pp. 1–10.10.1061/40976(316)362
- Pak, J., Ramos, K., Fleming, M., Scharffenberg, W., Gibson, S., 2015a. Sensitivity analysis for sediment transport in the hydrologic modeling system (HEC-HMS). In: Proc. 5th Federal Interagency Hydrologic Modeling Conference and the 10th Federal Interagency Sedimentation Conference. Reno, Nevada.
- Pak, J., Fleming, M., Scharffenberg, W., Gibson, S., Brauer, T., 2015b. Modeling surface 800 soil erosion and sediment transport processes in the Upper North Bosque River 801 Watershed, Texas. J. Hydrol. Eng., 20, 12, 4015034. DOI: 802 10.1061/(asce)he.1943-5584.0001205
- Pak, J., Floyd, I., Ely, P., 2021. Debris yield modeling application under post-wildfire conditions with the Hydrologic Modeling System (HEC-HMS). EGU General Assembly Abstracts, EGU21-494.10.5194/egusphere-egu21-494
- Ponce, V.M., ASCE M., Yevjevich, V., 1978. Muskingum-Cunge method with variable parameters. Journal of the Hydraulics Division, 104, 12, 1663–1667.10.1061/JYCEAJ.0005119
- Pongsai, S., Schmidt, Vogt, D., Shrestha, R.P., Clemente, R.S., Eiumnoh, A., 2010. Calibration and validation of the Modified Universal Soil Loss Equation for estimating sediment yield on sloping plots: A case study in Khun Satan catchment of northern Thailand. Canadian Journal of Soil Science, 90, 4, 585–596.10.4141/cjss09076
- QGIS software (2021). Bienvenido al proyecto QGIS!. https://www.qgis.org/es/site/ (accessed Mar. 04, 2022).
- Revell, N., Lashford, C., Blackett, M., Rubinato, M., 2021. Modelling the hydrological effects of woodland planting on infiltration and peak discharge using HEC-HMS. Water, 13, 21, 3039.S.
- Rivera-Toral, F., Pérez-Nieto, S., Ibáñez-Castillo, L.A., Hernández-Saucedo, F.R., 2012. Aplicabilidad del Modelo SWAT para la estimación de la erosión hídrica en las cuencas de México. Agrociencia, 46, 2, 101–105.
- Rodríguez González, C.A., 1998. Estudio de Ordenación Agrohidrológica y Socioeconómico Específico de la Cuenca del Arroyo de la Alhaja (Cádiz). Proyecto fin de carrera becado. Programa 940503 ES5-F.4.4. del Fondo Social Europeo. Centro Tecnológico Forestal de Cataluña y Universidad de Lleida, Solsona.
- Rodriguez-Iturbe, I., 2000. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resources Research, 36, 1, 3–9.10.1029/1999WR900210
- Sathya, A., Thampi, S.G., Chithra, N.R., 2021. Development of a framework for sand auditing of the Chaliyar River basin, Kerala, India using HEC-HMS and HEC-RAS model coupling. International Journal of River Basin Management, 1–14.10.1080/15715124.2021.1909604
- Şengül, S., İspirli, M.N., 2022. Predicting snowmelt runoff at the source of the mountainous Euphrates River basin in Turkey for water supply and flood control issues using HECHMS modeling. Water, 14, 3, 284.10.3390/w14030284
- Stephens, G.L., Slingo, J.M., Rignot, E., Reager, J.T., Hakuba, M.Z., Durack, P.J., Rocca, R., 2020. Earth’s water reservoirs in a changing climate. Proceedings of the Royal Society A, 476, 2236, 20190458.10.1098/rspa.2019.0458720913732398926
- Témez, J.R., 1978. Calculo hidrometeoorologico de caudales maximos en pequenas cuencas naturales. Dir. General de Carreteras, Servicio de Publicaciones, Madrid.
- Témez, J.R., 2003. Facetas del cálculo hidrometeorológico y estadístico de máximos caudales. Revista de Obras Públicas: Organo profesional de los Ingenieros de Caminos, Canales y Puertos, 3430, 47–51.
- Teng, F., Huang, W., Ginis, I., 2018. Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards, 91, 1, 179–199.10.1007/s11069-017-3121-y
- Toumi, S., Meddi, M., Mahé, G., Brou, Y.T., 2013. Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrological Sciences Journal, 58, 7, 1542–1558.10.1080/02626667.2013.824088
- Williams, J.R., 2018. Sediment-yield prediction with universal equation using runoff energy factor. In: Present and Prospective Technology for Predicting Sediment Yield and Sources. Forgotten Books, pp. 244–252.
- Wischmeier, W.H., Johnson, C.B., Cross, B.V., 1971. Soil erodibility nomograph for farmland and construction sites. J. Soils and Water. Cons., 26, 189–193.
- Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration, Washington, D.C.
- Zhang, Y., Degroote, J., Wolter, C., Sugumaran, R., 2009. Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk. Land Degradation & Development, 20, 1, 84–91.10.1002/ldr.893