Have a personal or library account? Click to login
Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture Cover

Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture

Open Access
|Aug 2022

Abstract

Agriculture faces several challenges to use the available resources in a more environmentally sustainable manner. One of the most significant is to develop sustainable water management. The modern Internet of Things (IoT) techniques with real-time data collection and visualisation can play an important role in monitoring the readily available moisture in the soil. An automated Arduino-based low-cost capacitive soil moisture sensor has been calibrated and developed for data acquisition. A sensor- and soil-specific calibration was performed for the soil moisture sensors (SKU:SEN0193 - DFROBOT, Shanghai, China). A Repeatability and Reproducibility study was conducted by range of mean methods on clay loam, sandy loam and silt loam soil textures. The calibration process was based on the data provided by the capacitive sensors and the continuously and parallelly measured soil moisture content by the thermogravimetric method. It can be stated that the response of the sensors to changes in soil moisture differs from each other, which was also greatly influenced by different soil textures. Therefore, the calibration according to soil texture was required to ensure adequate measurement accuracy. After the calibration, it was found that a polynomial calibration function (R2 ≥ 0.89) was the most appropriate way for modelling the behaviour of the sensors at different soil textures.

DOI: https://doi.org/10.2478/johh-2022-0014 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 330 - 340
Submitted on: Aug 3, 2021
Accepted on: Apr 28, 2022
Published on: Aug 23, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 István Mihály Kulmány, Ákos Bede-Fazekas, Ana Beslin, Zsolt Giczi, Gábor Milics, Barna Kovács, Márk Kovács, Bálint Ambrus, László Bede, Viktória Vona, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.