Have a personal or library account? Click to login
Effect of microplastics on silty loam soil properties and radish growth Cover

Effect of microplastics on silty loam soil properties and radish growth

Open Access
|Aug 2022

References

  1. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. J. Hydrol. Hydromech., 65, 3, 254–263.10.1515/johh-2017-0009
  2. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, L., 2019. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrological Processes, 33, 4, 661–674.10.1002/hyp.13352
  3. Ashraf, M.H.P.J.C., Harris, P.J., 2013. Photosynthesis under stressful environments: an overview. Photosynthetica, 51, 2, 163–190.10.1007/s11099-013-0021-6
  4. Baker, N.R., 2008. Chlorophyll fluorescence: a probe of photo-synthesis in vivo. Annu. Rev. Plant Biol., 59, 89–113.10.1146/annurev.arplant.59.032607.092759
  5. Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118.10.1016/B978-0-444-81490-6.50013-3
  6. Bordoloi, S., Yamsani, S.K., Garg, A., Sekharan, S., 2019. Critical assessment of infiltration measurements for soils with varying fine content using a mini disk infiltrometer. Journal of Testing and Evaluation, 47, 868–888.10.1520/JTE20170328
  7. Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. Journal of Hydrology, 231, 255–264.10.1016/S0022-1694(00)00199-2
  8. Colzi, I., Renna, L., Bianchi, E., Castellani, M. B., Coppi, A., Pignattelli, S., Loppi, S., Gonnelli, C., 2022. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, Article Number: 127238.10.1016/j.jhazmat.2021.127238
  9. Decagon, 2012a. Mini Disk Infiltrometer – User’s Manual. Version 10. Decagon Devices, Inc., Pullman.
  10. Decagon, 2012b. EC-5 Soil Moisture Sensor – User’s Manual. Version 2. Decagon Devices, Inc., Pullman.
  11. Dekker, L.W., Ritsema, C.J., Oostindie, K., Moore, D., Wesseling, J.A., 2009. Methods for determining soil water repellency on field-moist samples. Water Resources Research, 45, Article Number: W00D33.10.1029/2008WR007070
  12. Doerr, S.H., 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Processes and Land-forms, 23, 663–668.10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6
  13. Gamon, J., Serrano, L., Surfus, J.S., 1997. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112, 4, 492–501.10.1007/s004420050337
  14. Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87–92.10.1016/S0304-4165(89)80016-9
  15. Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Science Advances, 3, 7, Article Number: e1700782.10.1126/sciadv.1700782551710728776036
  16. Gong, W., Zhang, W., Jiang, M., Li, S., Liang, G., Bu, Q., Xua, L. Zhu, H., Lu, A., 2021. Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Science of the Total Environment, 796, Article Number: 148750.10.1016/j.scitotenv.2021.14875034265617
  17. Gonnelli, C., 2022. Impact of microplastics on growth, photo-synthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, Article Number: 127238.10.1016/j.jhazmat.2021.12723834844356
  18. Guidi, L., Lo Piccolo, E., Landi, M., 2019. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science, 10, Article Number: 174.10.3389/fpls.2019.00174638273730838014
  19. Hallett, P.D., 2008. A brief overview of the causes, impacts and amelioration of soil water repellency – a review. Soil and Water Research, 3, 1, 521–528.10.17221/1198-SWR
  20. Hazrati, S., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., Nicola, S., 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry, 106, 141–148.10.1016/j.plaphy.2016.04.04627161580
  21. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.10.1016/j.scitotenv.2017.01.19028169032
  22. ISO 11272, 2017. Soil Quality. Determination of dry bulk density. International Organization of Standardization, Geneva.
  23. Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., Klobučar, G., 2019. Ecotoxicity and genotoxicity of polystyrene micro-plastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838.10.1016/j.envpol.2019.04.05531051394
  24. Khalid, N., Aqeel, M., Noman, A., 2020. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, Article Number: 115653.10.1016/j.envpol.2020.11565333254725
  25. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.10.1127/0941-2948/2006/0130
  26. Lichtenthaler, H.K., Babani, F., 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Govindjee, G., Papageorgiou, G. (Eds.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 713–736.10.1007/978-1-4020-3218-9_28
  27. Machado, A.A.d.S., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., Rillig, M.C., 2018. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52, 17, 9656–9665.10.1021/acs.est.8b02212612861830053368
  28. Machado, A.A.d.S., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., Becker, R., Görlich, A.S., Rillig, M.C., 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53, 10, 6044–6052.10.1021/acs.est.9b0133931021077
  29. Melo, M., Lapin, M., Kapolková, H., Pecho, J., Kružicová, A., 2013. Climate trends in the Slovak part of the Carpathians. In: Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wyżga, B. (Eds.): The Carpathians: Integrating Nature and Society Towards Sustainability. Springer, Heidelberg, Germany, 717 p.10.1007/978-3-642-12725-0_10
  30. Meng, F., Yang, X., Riksen, M., Xu, M., Geissen, V., 2021. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 755, 142516.10.1016/j.scitotenv.2020.14251633045612
  31. Qi, Y.L., Yang, X., Pelaez, A.M., Lwanga, E.H., Beriot, N., Gertsen, H., Geissen, V., 2018. Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048–1056.10.1016/j.scitotenv.2018.07.22930248830
  32. Qi, R., Jones, D.L., Li, Z., Liu, Q., Yan, C., 2020a. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of the Total Environment, 703, Article Number: 134722.10.1016/j.scitotenv.2019.13472231767311
  33. Qi, Y., Beriot, N., Gort, G., Lwanga, E.H., Gooren, H., Yang, X., Geissen, V., 2020b. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut., 266, 115097.10.1016/j.envpol.2020.11509732629308
  34. Rillig, M.C., 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46, 6453–6454.10.1021/es302011r22676039
  35. Rillig, M.C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C.A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., Yang, G., 2019. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 6467, 886–890.10.1126/science.aay2832694193931727838
  36. Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., Palanisami, T., 2021. Estimation of the mass of microplastics ingested–A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404, Article Number: 124004.10.1016/j.jhazmat.2020.12400433130380
  37. Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 p.
  38. Stagnari, F., Galieni, A., D’Egidio, S., Pagnani, G., Pisante, M., 2018. Responses of radish (Raphanus sativus) to drought stress. Annals of Applied Biology, 172, 2, 170–186.10.1111/aab.12409
  39. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Troeger, J., Munoz, K., Fror, O., Schaumann, G.E., 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ., 550, 690−705.10.1016/j.scitotenv.2016.01.15326849333
  40. Šimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N.P., Uzarowicz, Ł., Juriga, M., Šrank, D., Pauková, Ž., 2018. Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech., 66, 429–436.10.2478/johh-2018-0033
  41. Thematic Strategy for Soil Protection, 2006. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. SEC(2006)620; SEC(2006)1165. Brussels.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52006DC0231
  42. Tinebra, I., Alagna, V., Iovino, M., Bagarello, V., 2019. Comparing different application procedures of the water drop penetration time test to assess soil water repellency in a fire affected Sicilian area. Catena, 177, 41–48.10.1016/j.catena.2019.02.005
  43. Toková, L., Igaz, D., Horák, J., Aydin, E., 2020. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10, 7, Article Number: 1005.10.3390/agronomy10071005
  44. WRB, 2014. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106. FAO, Rome.
  45. Zang, H., Zhou, J., Marshall, M.R., Chadwick, D.R., Wen, Y., Jones, D.L., 2020. Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system? Soil Biology and Biochemistry, 148, Article Number: 107926.10.1016/j.soilbio.2020.107926
  46. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
  47. Zhang, J., He, P., Ding, W., Ullah, S., Abbas, T., Li, M., Ai, Ch., Zhou, W., 2021. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China. Environmental Pollution, 268, Article Number: 115004.10.1016/j.envpol.2020.11500433010674
  48. Zhou, J., Wen, Y., Marshall, M.R., Zhao, J., Gui, H., Yang, Y., Yanga, Y., Zenga, Z., Jonesbe, D.L., Zang, H., 2021. Micro-plastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, Article Number: 147444.10.1016/j.scitotenv.2021.147444
DOI: https://doi.org/10.2478/johh-2022-0018 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 321 - 329
Submitted on: Feb 9, 2022
Accepted on: Jun 24, 2022
Published on: Aug 23, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Lenka Botyanszká, Peter Šurda, Justína Vitková, Ľubomír Lichner, Dušan Igaz, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.