Have a personal or library account? Click to login
Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress Cover

Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress

Open Access
|Feb 2018

References

  1. Ajdary, K., Singh, D.K., Singh, A.K., Khanna, M., 2007. Modelling of nitrogen leaching from experimental onion field under drip irrigation. Agr. Water Manage., 89, 15–28.10.1016/j.agwat.2006.12.014
  2. Armbruster, M., Seegert, J., Feger, K.H., 2004. Effects of changes in tree species composition on water flow dynamics – model applications and their limitations. Plant Soil, 264, 13–24.10.1023/B:PLSO.0000047716.45245.23
  3. Bachmann, J., Deurer, M., Arye, G., 2007. Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle–dependent water-retention model. Vadose Zone J., 6, 436–445.10.2136/vzj2006.0060
  4. Bauters, T.W.J., DiCarlo, D.A., Steenhuis, T.S., Parlange, J.-Y., 2000. Soil water content dependent wetting front characteristics in sands. J. Hydrology, 231–232, 244–254.10.1016/S0022-1694(00)00198-0
  5. Breuer, L., Eckhardt, K., Frede, H.G., 2003. Plant parameter values for models in temperate climates. Ecol. Model., 169, 237–293.10.1016/S0304-3800(03)00274-6
  6. Bughici, T., Wallach, R., 2016. Formation of soil-water repellency in olive orchards and its influence on infiltration pattern. Geoderma, 262, 1–11.10.1016/j.geoderma.2015.08.002
  7. Cerdà, A., Doerr, S.H., 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process., 21, 17, 2325–2336.10.1002/hyp.6755
  8. Chau, H.W., Biswas, A., Vujanovic, V., Si, B.C., 2014. Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils. Geoderma, 221–222, 113–120.10.1016/j.geoderma.2013.12.025
  9. Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. J. Hydrol., 231–232, 255–264.10.1016/S0022-1694(00)00199-2
  10. Czachor, H., Doerr, S.H., Lichner, L., 2010.Water retention of repellent and subcritical repellent soils: new insights from model and experimental investigations. J. Hydrol., 380, 104–111.10.1016/j.jhydrol.2009.10.027
  11. Debano, L.F., 1975. Infiltration, evaporation, and water movement as related to water repellency 1. In: Gardner, W.R., Moldenhauer, W.C. (Eds.): Soil Conditioners. SSSA Spec. Publ. 7. SSSA, Madison, WI., pp. 155–164.10.2136/sssaspecpub7.c15
  12. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil, 1. Potential and actual water repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749
  13. Diamantopoulos, E., Durner, W., 2013. Physically-based model of soil hydraulic properties accounting for variable contact angle and its effect on hysteresis. Adv. Water Resour., 59, 169–180.10.1016/j.advwatres.2013.06.005
  14. Diamantopoulos, E., Durner, W., Reszkowska, A., Bachmann, J., 2013. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions J. Hydrol., 486, 175–186.10.1016/j.jhydrol.2013.01.020
  15. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8
  16. Feddes, R.A., Kowalik, P.J., Zaradny, H., 1978. Simulation of Field Water Use and Crop Yield. John Wiley & Sons, New York. Fischer, E.M., Knutti, R., 2014. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 2, 547–554.10.1002/2013GL058499
  17. Ganz, C., Bachmann, J., Noell, U., Diujnisveld, W.H.M., Lamparter, A., 2014. Hydraulic modeling and in situ electrical resistivity tomography to analyze ponded infiltration into a water repellent sand. Vadose Zone J., 13, 1, 1–14.10.2136/vzj2013.04.0074
  18. Gee, G.W., Or, D., 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4 – Physical Methods. SSSA Book Series, No. 5. SSSA, Madison, WI, USA, pp. 1381–1402.
  19. González, M.G., Ramos, T.B., Carlesso, R., Paredes, P., Petry, M.T., Martins, J.D., Aires, N.P., Pereira, L.S., 2015. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosyst. Eng., 132, 1–18. DOI: 10.1016/j.biosystemseng.2015.02.001.10.1016/j.biosystemseng.2015.02.001
  20. Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.10.2136/sssaj2001.651184x
  21. Hardie, A.H., Lisson, S., Doyle, R.B., Cothing, W.E., 2013. Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil. Soil Till. Res., 130, 99–108.10.1016/j.still.2013.02.012
  22. Hopmans, J.W., Šimůnek, J., Romano, N., Durner, W., 2002. Inverse methods. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. SSSA Book Series, No. 5. SSSA, Madison, WI, pp. 963–1008.10.2136/sssabookser5.4.c40
  23. Huang, M., Barbour, S.L., Elshorbagy, A., Zettl, J.D., Si, B.C., 2011. Water availability and forest growth in coarse-textures soils. Canad. J. Soil Sci., 91, 199–210.10.4141/cjss10012
  24. IUSS, 2014. World reference base for soil resources. FAO, Rome.
  25. Jarvis, N., Etana, A., Stagnitti, F., 2008. Water repellency, nearsaturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma, 143, 223–230.10.1016/j.geoderma.2007.11.015
  26. Jordán, A., Zavala, L.M., Mataix-Solera, J., Doerr, S.H., 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1–5.10.1016/j.catena.2013.05.005
  27. Kandelous, M.M., Šimůnek, J., van Genuchten, M.Th, Malek, K., 2011. Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Soil Sci. Soc. Am. J., 75, 488–497.10.2136/sssaj2010.0181
  28. Lamparter, A., Bachmann, J., Deurer, M., Woche, S.K., 2010. Applicability of ethanol for measuring intrinsic hydraulic properties of sand with various water repellency levels. Vadose Zone J., 9, 445–450.10.2136/vzj2009.0079
  29. Leitner, S., Minixhofer, P., Inselsbacher, E., Keiblinger, K.M., Zimmermann, M., Zechmeister-Boltenstern, S., 2017. Shortterm soil mineral and organic nitrogen fluxes during moderate and severe drying-rewetting events. Appl. Soil Ecol., 114, 28–33.10.1016/j.apsoil.2017.02.014
  30. Lemmnitz, C., Kuhnert, M., Bens, O., Güntner, A., Merz, B., Hüttl, R.F., 2008. Spatial and temporal variations of actual soil water repellency and their influence on surface runoff. Hydrol. Process., 22, 1976–1984.10.1002/hyp.6782
  31. Lenhard, R.J., Parker, J.C. 1992. Modeling multiphase fluid hysteresis and comparing results to laboratory investigations. In: Genuchten, M.Th., Leij, F.J., Lund, L.J. (Eds.); Proc. Intl. Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of California, Riverside, CA.
  32. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 61–65.10.1016/S0022-1694(00)00183-9
  33. Leue, M., H.H. Gerke, Godow, S.C., 2015. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. J. Plant Nutr. Soil Sci., 178, 250–260.10.1002/jpln.201400209
  34. Liu, H., Ju, Z., Bachmann, J., Horton, R., Ren, T., 2012. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves. Soil Sci. Soc. Am. J., 76, 342–349.10.2136/sssaj2011.0081
  35. Monteith, J.L., 1981. Evaporation and surface temperature. Q. J. R. Meteorol. Soc., 107, 1–27.10.1002/qj.49710745102
  36. Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 3, 513–521.10.1029/WR012i003p00513
  37. Nakhaei, M., Šimůnek, J., 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62, 7–15.10.2478/johh-2014-0008
  38. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol., 10, 282–90.10.1016/0022-1694(70)90255-6
  39. Nieber, J., Bauters, T.W.J., Steenhuis, T.S., Parlange, J.Y., 2000. Numerical simulation of experimental gravity-driven unstable flow in water repellent sand. J. Hydrol., 231–232, 295–307.10.1016/S0022-1694(00)00202-X
  40. Ritsema, C.J., Dekker, L.W., 2000. Preferential flow in water repellent sandy soils: principles and modeling implications. J. Hydrol., 231–232, 308–319.10.1016/S0022-1694(00)00203-1
  41. Ritsema, C., Dekker, L.W., Hendrickx, J.M.H., Hamminga, W., 1993. Preferential flow mechanism in a water repellent sandy soil. Water Resour. Res., 29, 2183–2193.10.1029/93WR00394
  42. Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163–176.10.1016/S0022-1694(01)00466-8
  43. Schindler, U., Durner, W., von Unold, Georg., Müller, L., 2010. Evaporation method for measuring unsaturated hydraulic properties of soils: extending the measurement range. Soil Sci. Soc. Am. J., 74, 1071–1083.10.2136/sssaj2008.0358
  44. Schwen, A., Zimmermann, M., Bodner, G., 2014. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. J. Hydrol., 516, 169–181.10.1016/j.jhydrol.2014.01.042
  45. Schwen, A., Zimmermann, M., Leitner, S., Woche, S.K., 2015. Soil Water Repellency and its Impact on Hydraulic Characteristics in a Beech Forest under Simulated Climate Change. Vadose Zone J., 14, 12, 1–11.10.2136/vzj2015.06.0089
  46. Shang, J., Flury, M., Harsh, J.B., Zollars, R.L., 2008. Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interface Sci., 328, 299–307.10.1016/j.jcis.2008.09.039
  47. Šimůnek, J., van Genuchten, M.Th., 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683–2696.10.1029/96WR01525
  48. Šimůnek, J., van Genuchten, M.Th., 1997. Parameter estimation of soil hydraulic properties from multiple tension disc infiltrometer data. Soil Sci., 162, 383–398.10.1097/00010694-199706000-00001
  49. Šimůnek, J., Angulo-Jaramillo, R., Schaap, M.G., Vandervaere, J.P., van Genuchten, M.T., 1998. Using an inverse method to estimate the hydraulic properties of crusted soils from tension disc infiltrometer data. Geoderma, 86, 61–81.10.1016/S0016-7061(98)00035-4
  50. Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, 7. DOI: 10.2136/vzj2016.04.003310.2136/vzj2016.04.0033
  51. Stocker, T.F., Qin, D., Plattner, G.-K. Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), 2013. Climate Change. The Physical Science Basis. Summary for Policymakers. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge and New York, pp. 1–30.
  52. Stoffregen, H., Wessolek, G., 2014. Scaling the hydraulic functions of a water repellent sandy soil. Int. Agrophys., 28, 349–358.10.2478/intag-2014-0025
  53. Subedi, S., Kawamoto, K., Komatsu, T., Moldrup, P., Wollesen de Jonge, L., Müller, K., Clothier, B., 2013. Contact angles of water-repellent porous media inferred by tensiometer-TDR probe measurement under controlled wetting and drying cycles. Soil Sci. Soc. Am. J., 77, 1944–1954.10.2136/sssaj2013.05.0203
  54. van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002x
  55. Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J., 15, 5. DOI: 10.2136/vzj2015.09.0131.10.2136/vzj2015.09.0131
  56. Watson, C.L., Letey, J., 1970. Indices for characterizing soilwater repellency based upon contact angle-surface tension relationships. Soil Sci. Soc. Am. Proc., 34, 841–844.10.2136/sssaj1970.03615995003400060011x
DOI: https://doi.org/10.2478/johh-2018-0002 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 170 - 180
Submitted on: Jul 17, 2017
|
Accepted on: Dec 29, 2017
|
Published on: Feb 6, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Vilim Filipović, Thomas Weninger, Lana Filipović, Andreas Schwen, Keith L. Bristow, Sophie Zechmeister-Boltenstern, Sonja Leitner, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.