Have a personal or library account? Click to login
Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava Cover

Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava

Open Access
|Aug 2014

References

  1. Ashkar, F., Rousselle, J., 1982. A multivariate statistical analysis of flood magnitude, duration, and volume. In: Statistical Analysis of Rainfall and Runoff. Water Resource Publication, Fort Collins, CO, pp. 651-669.
  2. Balakrishnan, N., Lai, C.D., 2009. Continuous Bivariate Distributions. Distributions Expressed as Copulas. Springer Science + Business Media, Philadelphia, pp. 67-103, doi: 10.1007/b101765_3.10.1007/b101765_3
  3. Chen, X., Fan, Y., 2005. Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. Can. J. Stat., 33, 3, 389-414.10.1002/cjs.5540330306
  4. Chowdhary, H., Escobar, L.A., Singh, V.P., 2011. Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrol. Res., 42, 2-3, 193-215.10.2166/nh.2011.065
  5. Cunnane, C., 1978. Methods and merits of regional flood frequency analysis. J. Hydrol., 100, 269-290.10.1016/0022-1694(88)90188-6
  6. De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., Rosso, R., 2005. Bivariate statistical approach to check adequacy of dam spillway. J. Hydrol. Eng., 10, 1, 50-57.10.1061/(ASCE)1084-0699(2005)10:1(50)
  7. Embrechts, P., Lindskog, F., McNeil, A.J., 2001. Modeling dependence with copulas and applications to risk management. Department of mathematic. Working paper CH-8092, ETH, Zürich, 41 p.
  8. Faqir, M., Shazia, A., 2007. Modeling annual maximum peak flows at various dams and barrages in Pakistan. J. Hydrol. Hydromech., 55, 1, 43-53.
  9. Favre, A.C., El Adlouni, S., Perreaut, L., Thiémonge, N., Bobée, B., 2004. Multivariate hydrological frequency analysis using copulas. Water Resour. Res., 40, 1, W01101.10.1029/2003WR002456
  10. Genest, C., Favre, A.C., 2007. Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng., 12, 347-368.10.1061/(ASCE)1084-0699(2007)12:4(347)
  11. Grimaldi, S., Serinaldi, F., 2006. Asymmetric Copula in Multivariate Flood Frequency Analysis. Adv. Water Resour., 29, 1155-1167.10.1016/j.advwatres.2005.09.005
  12. Gringorten, I.I., 1963. A plotting rule for extreme probability paper. J. Geophys. Res., 68, 3, 813-814.10.1029/JZ068i003p00813
  13. Hall, J., Arheimer, B., Borga, M., Brazdil, R., Claps, P., Kiss, A., Kjeldsen, T.R, Kriaučiūnienė, J., Kundzewicz, Z.W., Lang, M., Llasat, M.C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R.A.P., Plavcova, L., Rogger, M., Salinas, J.L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., Blöschl, G., 2013. Understanding flood regime changes in Europe: a state of the art assessment. Hydrol. Earth Syst. Sci. Discuss., 10, 15525-15624.10.5194/hessd-10-15525-2013
  14. Hoefinding, W., 1940. Scale of invariant correlation theory. Schr. Math. Angew. Math., Univ. Berlin, Berlin, 5, 3, 181-233. (In German.) Joe, H., 1997. Multivariate Models and Dependence Concepts. Chapman and Hall, New York, 399 p.
  15. Karmakar, S., Simonovic, S.P., 2007. Flood frequency analysis using copula with mixed distributions. Project report No. 055. The University of Western Ontario, Department of Civil and Environmental Engineering. London, Ontario, Canada 58 p.
  16. Karmakar, S., Simonovic, S.P., 2009. Bivariate flood frequency analysis. Part 1: Determination of marginals by parametric and nonparametric techniques. J. Flood Risk Manag., 1, 190-200.10.1111/j.1753-318X.2008.00022.x
  17. Kojadinovic, I., Yan, J., 2011. A Goodness-of-Fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Statistics and Computing, 21, 1, 1-26.10.1007/s11222-009-9142-y
  18. Le Clerc, S., Lang, M., 2002. Flood frequency analysis downstream confluences. Comparison between bivariate densities and experimental data. In: International Conference on Flood Estimation, Berne, pp. 295-304.
  19. Linsley, R.K., Kohler, M.A., Paulhus, J.L.H., 1975. Applied Hydrology. McGraw-Hill, New York.
  20. Maca, P., Torf, P., 2009. The influence of temporal rainfall distribution in the flood runoff modelling. Soil and Water Res., 4 (Special Issue 2), 102-110.10.17221/471-SWR
  21. Merz, R., Blöschl, G., 2003. A process typology of regional floods, Water Resour. Res., 39, 12, 1340-1360.10.1029/2002WR001952
  22. Myers, J.L., Well, A.D., 2003. Research Design and Statistical Analysis. 2nd ed. Lawrence Erlbaum, Hillsdale, NJ, 508 p.
  23. Nelsen, R.B., 1999. An Introduction to Copulas. Lecture Notes in Statistics. Springer, New York.10.1007/978-1-4757-3076-0
  24. Nelsen, R.B., 2006. An Introduction to Copula. 2nd ed. Springer, New York.
  25. Parajka, J., Merz, R., Szolgay, J., Bloschl, G., Kohnová, S., Hlavčová., K., 2008. A comparison of precipitation and runoff seasonality in Slovakia and Austria. Meteorological Journal, 4, 9-14.
  26. Parajka, J., Kohnová, S., Merz, R., Szolgay, J., Hlavcová, K., Blöschl, G., 2009. Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria. Hydrological Sciences Journal, 54, 3, 456-473.10.1623/hysj.54.3.456
  27. Parajka, J, Kohnová, S., Bálint, G., Barbuc, M., Borga, M., Claps, P., Cheval, S., Dumitrescu, A., Gaume, E., Hlavcová, K., Merz, R., Pfaundler, M., Stancalie, G., Szolgay, J., Blöschl, G., 2010. Seasonal characteristics of flood regimes across the Alpine-Carpathian range. Journal of Hydrology, 394, 1-2, 78-89.10.1016/j.jhydrol.2010.05.015410669025067854
  28. Prohaska, S., Isailović, D., Srna, P., Marčetić, I., 1999. Coincidence of flood flow of the Danube River and its tributaries. A Hydrological monograph of the Danube River Basin, Belgrade University, Belgrade.
  29. Reddy, M.J., Ganguli, P., 2012. Bivariate flood frequency analysis of upper Godavari River flows using Archimedean Copulas. Water Resources Management, 26, 14, 3995-4018.10.1007/s11269-012-0124-z
  30. Requena, A., Mediero, L., Garrote, L., 2012. A Monte Carlo procedure based on the use of copulas for risk assessment of dam overtopping. In: Proc. 3rd STAHY International Workshop on Statist. Methods for Hydrol. and Water Resour. Manag., Tunis, pp. 1-11.
  31. Sackl, B., Bergmann, H., 1987. A Bivariate Flood Model and its Application. Hydrologic Frequency Modeling. Riedel, Dordrecht, The Netherlands, pp. 571-582.10.1007/978-94-009-3953-0_40
  32. Salvadori, G., 2004. Bivariate return periods via 2-Copulas. Stat. Methodol., 1, 129-144.10.1016/j.stamet.2004.07.002
  33. Salvadori, G., De Michele, C., 2004. Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour. Res., 40, W12511.10.1029/2004WR003133
  34. Salvadori, G., De Michele, C., 2006. Statistical characterization of temporal structure of storms. Adv. Water Resour., 29, 6, 827-842.10.1016/j.advwatres.2005.07.013
  35. Savu, C., Trede, M., 2006. Hierarchical Archimedean Copulas. Institute of Econometrics, University of Muenster, Muenster, Germany.
  36. Schweizer, B., Wolff, E.F., 1981. On nonparametric measures of dependence for random variables. Ann. Stat., 9, 879-885.10.1214/aos/1176345528
  37. Serinaldi, F., Kilsby, C.G., 2013. The intrinsic dependence structure of peak, volume, duration, and average intensity of hyetographs and hydrographs. Water Resour. Res., 49, 6, 3423-3442.10.1002/wrcr.20221
  38. Shiau, J.T., 2003. Return period of bivariate distributed extreme hydrological events. Stoch. Envir. Res. Risk Assess., 17, 42-57.10.1007/s00477-003-0125-9
  39. Shiau, J.T., Wang, H.Y., Tsai, C.T., 2010. Copula-based depthduration- frequency analysis of typhoons in Taiwan. Hydrol. Res., 41, 5, 414-422.10.2166/nh.2010.048
  40. Sklar, A., 1959. Fonction de re’partition a’n dimensions et leurs marges. [Distribution functions, dimensions and margins]. Publications of the Institute of Statistics, University of Paris, Paris, pp. 229-231. (In French.)
  41. Spearman, C., 1904. The proof and measurement of association between two things. American Journal of Psychology, 15, 72-101.10.2307/1412159
  42. Todorovic, P., 1978. Stochastic models of floods. Water Resour. Res., 14, 2, 345-356.10.1029/WR014i002p00345
  43. Todorovic, P., Zelenhasic, E., 1970. A stochastic model for flood analysis. Water Resour. Res., 6, 6, 1641-1648.10.1029/WR006i006p01641
  44. Xiao, M., Zhang, Q., Chen, Y., Chen, X., 2013. Hydrological drought frequency analysis of east river basin based on trivariate copulas function. Journal of Natural Disasters, 22, 2, 99-108.
  45. Yan, B., Guo, S., Yu, W., 2013. Coincidence risk of flood hydrographs between Yangtze River and Qing River Shuili Fadian Xuebao. Journal of Hydroelectric Engineering, 32, 1, 50-53.
  46. Yue, S., Ouarda, T.B.M.J., Bobée, B., Legendre, P., Bruneau, P., 1999. The Gumbel mixed model for flood frequency analysis. J. Hydrol., 226, 1-2, 88-100.10.1016/S0022-1694(99)00168-7
  47. Zhang, L., Singh, V.P., 2006. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. ASCE, 11, 2, 150-164.10.1061/(ASCE)1084-0699(2006)11:2(150)
  48. Zhang, L., Singh, V.P., 2007. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J. Hydrol. Eng., 12, Special Issue on Copulas in Hydrology, 431-439. 10.1061/(ASCE)1084-0699(2007)12:4(431)
DOI: https://doi.org/10.2478/johh-2014-0026 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 186 - 196
Submitted on: Mar 12, 2014
|
Accepted on: May 14, 2014
|
Published on: Aug 15, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Veronika Bačová Mitková, Dana Halmová, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.