References
- Adam, M., Westphal, A., Hallmann, J., and Heuer, H. 2014. Specific microbial attachment to root knot nematodes in suppressive soil. Applied and Environmental Microbiology 80:2679–2686. doi: 10.1128/AEM.03905-13
- Armbruster, M., Goodall, T., Hirsch, P. R., Ostle, N., Puissant, J., Fagan, K. C., Pywell, R. F., and Griffiths, R. I. 2021. Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. European Journal of Soil Science 72:2430–2444. doi: 10.1111/ejss.12977
- Baquiran, J.-P., Thater, B., Sedky, S., De Ley, P., Crowley, D., and Orwin, P. M. 2013. Culture-independent investigation of the microbiome associated with the nematode Acrobeloides maximus. PLoS One 8:e67425. doi: 10.1371/journal.pone.0067425
- Bardgett, R. D., and van der Putten, W. H. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505–511. doi: 10.1038/nature13855
- Bay, S. K., McGeoch, M. A., Gillor, O., Wieler, N., Palmer, D. J., Baker, D. J., Chown, S. L., and Greening, C. 2020. Soil bacterial communities exhibit strong biogeographic patterns at fine taxonomic resolution. mSystems 5:e00540–20. doi: 10.1128/msystems.00540-20
- Berg, M., Stenuit, B., Ho, J., Wang, A., Parke, C., Knight, M., Alvarez-Cohen, L., and Shapira, M. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. The ISME Journal 10:1998–2009. doi: 10.1038/ismej.2015.253
- Bird, G. W. 1971. Digestive system of Trichodorus porosus. Journal of Nematology 3:50–57.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson MS, 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R., and Caporaso, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37:852–857. doi: 10.1038/s41587-019-0209-9
- Boutsika, A., Xanthopoulou, A., Tanou, G., Zacharatou, M. E., Vernikos, M., Nianiou Obeidat, I., Ganopoulos, I., and Mellidou, I. 2024. A microbiome survey of contrasting potato terroirs using 16S rRNA long-read sequencing. Plant and Soil 505:431–448. doi: 10.1007/s11104-024-06686-8
- Brown, A. M. V. 2018. Endosymbionts of plant-parasitic nematodes. Annual Review of Phytopathology 56:225–242. doi: 10.1146/annurev-phyto-080417-045824
- Brown, D. J. F., and Boag, B. 1988. An examination of methods used to extract virus-vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematologia Mediterranea 16:93–99.
- Brown, D. J. F., Ploeg, A. T., and Robinson, D. J. 1989. A review of reported associations between Trichodorus and Paratrichodorus species (Nematoda: Trichodoridae) and tobraviruses with a description of laboratory methods for examining virus transmission by trichodorids. Revue de Nématologie 12:235–241.
- Büttner, H., Niehs, S. P., Vandelannoote, K., Cseresnyés, Z., Dose, B., Richter, I., Gerst, R., Figge, M. T., Stinear, T. P., Pidot, S. J., and Hertweck, C. 2021. Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proceedings of the National academy of Sciences of the United States of America 118:e2110669118. doi: 10.1073/pnas.2110669118
- Cao, Y., Tian, B., Ji, X., Shang, S., Lu, C., and Zhang, L. 2015. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis. Journal of Basic Microbiology 55:950–960. doi: 10.1002/jobm.201400816
- Castillo, J. D., Vivanco, J. M., and Manter, D. K. 2017. Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microbial Ecology 74:888–900. doi: 10.1007/s00248-017-0990-2
- Chitwood, D. J. 2003. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Management Science 59:748–753. doi: 10.1002/ps.684
- Creamer, R. E., Hannula, S. E., van Leeuwen, J. P., Stone, D., Rutgers, M., Schmelz, R. M., de Ruiter, P. C., Bohse Hendriksen, N., Bolger, T., Bouffaud, M. L., Buee, M., Carvalho, F., Costa, D., Dirilgen, T., Francisco, R., Griffiths, B. S., Griffiths, R., Martin, F., Martins da Silva, P., Mendes, S., Morais, P. V., Pereira, C., Philippot, L., Plassart, P., Redecker, D., Römbke, J., Sousa, J. P., Wouterse, M., and Lemanceau, P. 2016. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as effected by land use across Europe. Applied Soil Ecology 97:112–124. doi: 10.1016/j.apsoil.2015.08.006
- Decraemer, W., Cantalapiedra-Navarrete, C., Archidona-Yuste, A., Varela-Benavides, I., Gutiérrez-Gutiérrez, C., Castillo, P., and Palomares-Rius, J. E. 2019. Integrative taxonomy unravels cryptic diversity in the Paratrichodorus hispanus-group complex and resolves two new species of the genus and the molecular phylogeny of the family (Nematoda: Trichodoridae). Zoological Journal of the Linnean Society 185(3):656–692. doi: 10.1093/zoolinnean/zly059
- Denton, C. S., Bardgett, R. D., Cook, R., and Hobbs, P. J. 1998. Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biology and Biochemistry 31:155–165. doi: 10.1016/S0038-0717(98)00118-7
- Denver, D. R., Brown, A. M., Howe, D. K., Peetz, A. B., and Zasada, I. A. 2016. Genome skimming: A rapid approach to gaining diverse biological insights into multicellular pathogens. Plos Pathogens 12:e1005713. doi: 10.1371/journal.ppat.1005713
- Donn, S., Neilson, R., Griffiths, B. S., and Daniell, T. J. 2012. A novel molecular approach for rapid assessment of soil nematode assemblages – variation, validation and potential applications. Methods in Ecology and Evolution 3:12–23. doi: 10.1111/j.2041-210X.2011.00145.x
- Elhady, A., Giné, A., Topalovic, O., Jacquiod, S., Sørensen, S. J., Sorribas, F. J., and Heuer, H. 2017. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS One 12:e0177145. doi: 10.1371/journal.pone.0177145
- Elhady, A., Topalovic, O., and Heuer, H. 2021. Plants specifically modulate the microbiome of root-lesion nematodes in the rhizosphere, affecting their fitness. Microorganisms 9:679. doi: 10.3390/microorganisms9040679
- Forst, S., and Clarke, D. 2001. Bacteria-nematode symbiosis. Pp. 57–78 in R. Gaugler, ed. Entomopathogenic nematology. Wallingford: CABI.
- Haack, F. S., Poehlein, A., Kröger, C., Voigt, C. A., Piepenbring, M., Bode, H. B., Daniel, R., Schäfer, W., and Streit, W. R. 2016. Molecular keys to the Janthinobacterium and Duganella spp. interaction with the plant pathogen Fusarium graminearum. Frontiers in Microbiology 7:1668. doi: 10.3389/fmicb.2016.01668
- Haghani, N. B., Lampe, R. H., Samuel, B. S., Chalasani, S. H., and Matty, M. A. 2024. Identification and characterization of a skin microbiome on Caenorhabditis elegans suggests environmental microbes confer cuticle protection. Microbiology Spectrum 12:e0016924. doi: 10.1128/spectrum.00169-24
- Hillocks, R. J. 2012. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Protection 31:85–93. doi: 10.1016/j.cropro.2011.08.008
- Hornung, C., Poehlein, A., Haack, F. S., Schmidt, M., Dierking, K., Pohlen, A., Schulenburg, H., Blokesch, M., Plener, L., Jung, K., Bonge, A., Krohn-Molt, I., Utpatel, C., Timmermann, G., Spieck, E., Pommerening-Röser, A., Bode, E., Bode, H. B., Daniel, R., Schmeisser, C., and Streit, W. R. 2013. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 8:e55045. doi: 10.1371/journal.pone.0055045
- Hugot, J., Baujard, P., and Morand, S. 2001. Biodiversity in helminths and nematodes as a field study: An overview. Nematology 3:199–220. doi: 10.1163/156854101750413270
- Karanastasi, E., Decraemer, W., Wyss, U., and Brown, D. J. F. 2004. The ultrastructure of the feeding apparatus and pharyngeal tract of four European species of Trichodoridae (Nematoda:Triplonchida). Nematology 6:695–713. doi: 10.1163/1568541042843450
- Karanastasi, E., Wyss, U., and Brown, D. J. F. 2003. An in vitro examination of the feeding behaviour of Paratrichodorus anemones (Nematoda: Trichodoridae), with comments on the ability of the nematode to acquire and transmit Tobravirus particles. Nematology 5:421–434. doi: 10.1163/1568541042843450
- Ladygina, N., Johansson, T., Canbäck, B., Tunlid, A., and Hedlund, K. 2009. Diversity of bacteria associated with grassland soil nematodes of different feeding groups. FEMS Microbiology Ecology 69:53–61. doi: 10.1111/j.1574-6941.2009.00687.x
- Lamelas, A., Desgarennes, D., López-Lima, D., Villain, L., Alonso-Sánchez, A., Artacho, A., Latorre, A., Moya, A., and Carrión, G. 2020. The bacterial microbiome of Meloidogyne-based disease complex in coffee and tomato. Frontiers in Plant Science 11:136. doi: 10.3389/fpls.2020.00136
- Lazarova, S. S., Brown, D. J. F., Oliveira, C. M. G., Fenton, B., MacKenzie, K., Wright, F., Malloch, G., and Neilson, R. 2016. Diversity of endosymbiont bacteria associated with a non-filarial nematode group. Nematology 18:615–623. doi: 10.1163/15685411-00002982
- Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550. doi: 10.1186/s13059-014-0550-8
- Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J., and Fischer, M. 2018. Redefining ecosystem multifunctionality. Nature Ecology and Evolution 2:427–436. doi: 10.1038/s41559-017-0461-7
- Marshall, B., Boag, B., McNicol, J. W., and Neilson, R. 1998. A comparison of the spatial distribution of three plant-parasitic nematode species at three different scales. Nematologica 44:303–320. doi: 10.1163/005425998X00062
- Martins do Rêgo Barros, F., Neilson, R., Giles, M., Caul, S., Pedrinho, A., de Oliveira, C. M. G., da Silva, L. A., de Araújo, V. L. V. P., Mendes, L. W., and Andreote, F. D. 2025. Bacterial and nematode communities associated with soybean-cultivated soils from two native Brazilian biomes. Applied Soil Ecology 212:106179. doi: 10.1016/j.apsoil.2025.106179
- Mezeli, M. M., Page, S., George, T. S., Neilson, R., Mead, A., Blackwell, M. S. A., and Haygarth, P. M. 2020. Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants. Soil Biology and Biochemistry 142:e107695. doi: 10.1016/j.soilbio.2019.107695
- Migunova, V. D., and Sasanelli, N. 2021. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 10:389. doi: 10.3390/plants10020389
- Mobasseri, M., Hutchinson, M. C., Afshar, F. J., and Pedram, M. 2019. New evidence of nematode-endosymbiont bacteria coevolution based on one new and one known dagger nematode species of Xiphinema americanum-group (Nematoda, Longidoridae). PLoS One 14:e0217506. doi: 10.1371/journal.pone.0217506
- Myers, K. N., Conn, D., and Brown, A. M. V. 2021. Essential amino acid enrichment and positive selection highlight endosymbiont’s role in a global virus-vectoring pest. mSystems 6:e01048–20. doi: 10.1128/mSystems.01048-20
- Nannipieri, P., Emilia Hannula, S., Pietramellara, G., Schloter, M., Sizmur, T., and Pathan, S. I. 2023. Legacy effects of rhizodeposits on soil microbiomes: A perspective. Soil Biology and Biochemistry 184:109107. doi: 10.1016/j.soilbio.2023.109107
- Neilson, R., Caul, S., Fraser, F. C., King, D., Mitchell, S. M., Roberts, D. M., and Giles, M. E. 2020. Microbial community size is a potential predictor of nematode functional group in limed grasslands. Applied Soil Ecology 156:e103702. doi: 10.1016/j.apsoil.2020.103702
- Noel, G. R., and Atibalentja, N. 2006. ‘Candidatus Paenicardinium endonii’, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. International Journal of Systematic and Evolutionary Microbiology 56:1697–1702. doi: 10.1099/ijs.0.64234-0
- Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., Martino, C., McGlinn, D., Ouellette, M. H., Cunha, E. R., Smith, T., Stier, A., Ter Braak, C. J. F., and Weedon, J. 2024. Vegan: Community ecology package, version 2.6-6.1, Retrieved from
https://cran.r-project.org/web/packages/vegan/index.html - Orlando, V., Chitambar, J. J., Dong, K., Chizhov, V. N., Mollov, D., Bert, W., and Subbotin, S. A. 2016. Molecular and morphological characterisation of Xiphinema americanum-group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes. Nematology 18:1015–1043. doi: 10.1163/15685411-00003012
- Oro, V., Knezevic, M., Dinic, Z., and Delic, D. 2020. Bacterial microbiota isolated from cysts of Globodera rostochiensis (Nematoda: Heteroderidae). Plants 9:1146. doi: 10.3390/plants9091146
- Oro, V., Stanisavljevic, R., Nikolic, B., Tabakovic, M., Secanski, M., and Tosi, S. 2021. Diversity of mycobiota associated with the cereal cyst nematode Heterodera filipjevi originating from some localities of the Pannonian plain in Serbia. Biology (Basel) 10:283. doi: 10.3390/biology10040283
- Orr, J. N., Neilson, R., Freitag, T. E., Roberts, D. M., Davies, K. G., Blok, V. C., and Cock, P. J. A. 2020. Parallel microbial ecology of Pasteuria and nematode species in Scottish soils. Frontiers in Plant Science 10:e1763. doi: 10.3389/fpls.2019.01763
- Palomares-Rius, J. E., Gutiérrez-Gutiérrez, C., Mota, M., Bert, W., Claeys, M., Yushin, V. V., Suzina, N. E., Ariskina, E. V., Evtushenko, L. I., Subbotin, S. A., and Castillo, P. 2021. ‘Candidatus Xiphinematincola pachtaicus’ gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae). International Journal of Systematic and Evolutionary Microbiology 71:004888. doi: 10.1099/ijsem.0.004888
- Parada, A. E., Needham, D. M., and Fuhrman, J. A. 2016. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology 18:1403–1414. doi: 10.1111/1462-2920.13023
- Parr McQueen, J., Gattoni, K., Gendron, E. M. S., Schmidt, S. K., Sommers, P., and Porazinska, D. L. 2023. External and internal microbiomes of Antarctic nematodes are distinct, but more similar to each other than the surrounding environment. Journal of Nematology 55:20230004. doi: 10.2478/jofnem-2023-0004
- Petersen, C., Hamerich, I. K., Adair, K. L., Griem-Krey, H., Torres Oliva, M., Hoeppner, M. P., Bohannan, B. J. M., and Schulenburg, H. 2023. Host and microbiome jointly contribute to environmental adaptation. The ISME Journal 17:1953–1965. doi: 10.1038/s41396-023-01507-9
- Petrushin, I. S., Filinova, N. V., and Gutnik, D. I. 2024. Potato microbiome: Relationship with environmental factors and approaches for microbiome modulation. International Journal of Molecular Sciences 25:750. doi: 10.3390/ijms25020750
- Puissant, J., Villenave, C., Chauvin, C., Plassard, C., Blanchart, E., and Trap, J. 2021. Quantification of the global impact of agricultural practices on soil nematodes: A meta-analysis. Soil Biology and Biochemistry 161:108383. doi: 10.1016/j.soilbio.2021.108383
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41:D590–D596. doi: 10.1093/nar/gks1219
- Schlatter, D., Kinkel, L., Thomashow, L., Weller, D., and Paulitz, T. 2017. Disease suppressive soils: New insights from the soil microbiome. Phytopathology 107:1284–1297. doi: 10.1094/PHYTO-03-17-0111-RVW
- Sharma, R., Kapoor, N., and Ohri, P. 2025. Ameliorative effect of rhizobacteria Bradyrhizobium japonicum on antioxidant enzymes, cell viability and biochemistry in tomato plant under nematode stress. Scientific Reports 15:8017. doi: 10.1038/s41598-025-92798-9
- Shokoohi, E., Mashela, P. W., and Machado, R. A. R. 2022. Bacterial communities associated with Zeldia punctata, a bacterivorous soil-borne nematode. International Microbiology 25:207–216. doi: 10.1007/s10123-021-00207-8
- Shokoohi, E., and Masoko, P. 2024. Microbiome of Xiphinema elongatum (Nematoda, Longidoridae), isolated from waterberry. Scientific Reports 14:29494. doi: 10.1038/s41598-024-80877-2
- Showmaker, K. C., Walden, K. K. O., Fields, C. J., Lambert, K. N., and Hudson, M. E. 2018. Genome sequence of the soybean cyst nematode (Heterodera glycines) endosymbiont “Candidatus Cardinium hertigii” strain cHgTN10. Genome Announcements 6:e00624–18. doi: 10.1128/genomeA.00624-18
- Somenahally, A., DuPont, J. I., Brady, J., McLawrence, J., Northup, B., and Gowda, P. 2018. Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems. Soil Biology and Biochemistry 123:126–135. doi: 10.1016/j.soilbio.2018.04.025
- Swem, L. R., Swem, D. L., O’Loughlin, C. T., Gatmaitan, R., Zhao, B., Ulrich, S. M., and Bassler, B. L. 2009. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Molecular Cell 35:143–153. doi: 10.1016/j.molcel.2009.05.029
- Taylor, C. E., and Brown, D. J. F. 1997. Nematode vectors of plant viruses. Wallingford: CABI.
- Thakur, M. P., and Geisen, S. 2019. Trophic regulations of the soil microbiome. Trends in Microbiology 27:771–780. doi: 10.1016/j.tim.2019.04.008
- Topalović, O., Bak, F., Santos, S., Sikder, M. M., Sapkota, R., Ekelund, F., Nicolaisen, M. H., and Vestergård, M. 2023. Activity of root-knot nematodes associated with composition of a nematode-attached microbiome and the surrounding soil microbiota. FEMS Microbiology Ecology 99:fiad091. doi: 10.1093/femsec/fiad091
- Topalović, O., Bredenbruch, S., Schleker, A. S. S., and Heuer, H. 2020. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Frontiers in Plant Science 11:138. doi: 10.3389/fpls.2020.00138
- Topalović, O., Elhady, A., Hallmann, J., Richert-Pöggeler, K. R., and Heuer, H. 2019. Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Scientific Reports 9:11477. doi: 10.1038/s41598-019-47942-7
- Topalović, O., Santos, S. S., Heuer, H., Nesme, J., Kanfra, X., Hallmann, J., Sørensen, S. J., and Vestergård, M. 2022. Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soils. Applied Soil Ecology 172:104344. doi: 10.1016/j.apsoil.2021.104344
- van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J. I., and Crowther, T. W. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572:194–198. doi: 10.1038/s41586-019-1418-6
- Vandekerckhove, T. T. M., Coomans, A., Cornelis, K., Baert, P., and Gillis, M. 2002. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridisation for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Applied and Environmental Microbiology 68:3121–3125. doi: 10.1128/AEM.68.6.3121-3125.2002
- Vandekerckhove, T. T. M., Willems, A., Gillis, M., and Coomans, A. 2000. Occurrence of novel Verrucomicrobial species, endosymbiont and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda: Longidoridae). International Journal of Systematic and Evolutionary Microbiology 50:2197–2205. doi: 10.1099/00207713-50-6-2197
- Walsh, J. A., Lee, D. L., and Shepherd, A. M. 1983. The distribution and effect of intracellular rickettsia-like microorganisms infecting adult males of the potato cyst-nematode Globodera rostochiensis. Nematologica 29:227–239. doi: 10.1163/187529283X00474
- Walters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J. A., Jansson, J. K., Caporaso, J. G., Fuhrman, J. A., Apprill, A., and Knight, R. 2015. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009–15. doi: 10.1128/msystems.00009-15
- Wasala, S. K., Brown, A. M. V., Kang, J., Howe, D. K., Peetz, A. B., Zasada, I. A., and Denver, D. R. 2019. Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Frontiers in Microbiology 10:964. doi: 10.3389/fmicb.2019.00964
- Wiesel, L., Daniell, T. J., King, D., and Neilson, R. 2015. Determination of the optimal soil sample size to accurately characterise nematode communities in soil. Soil Biology and Biochemistry 80:89–91. doi: 10.1016/j.soilbio.2014.09.026
- Xia, Q., Rufty, T., and Shi, W. 2021. Predominant microbial colonizers in the root endosphere and rhizosphere of turfgrass systems: Pseudomonas veronii, Janthinobacterium lividum, and Pseudogymnoascus spp. Frontiers in Microbiology 12:643904. doi: 10.3389/fmicb.2021.643904
- Xu, Y. M., and Zhao, Z. Q. 2019. Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida). Lincoln, New Zealand: Landcare Research.
- Yergaliyev, T. M., Alexander-Shani, R., Dimerets, H., Pivonia, S., Bird, D. M., Rachmilevitch, S., and Szitenberg, A. 2020. Bacterial community structure dynamics in Meloidogyne incognita-infected roots and its role in worm-microbiome interactions. mSphere 5:e00306–20. doi: 10.1128/msphere.00306-20
- Yin, C., Casa Vargas, J. M., Schlatter, D. C., Hagerty, C. H., Hulbert, S. H., and Paulitz, T. C. 2021. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome 9:86. doi: 10.1186/s40168-020-00997-5
- Zheng, F., Zhu, D., Giles, M., Daniell, T., Neilson, R., Zhu, Y. G., and Yang, X. R. 2019. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnatis and its resistome. The Science of the Total Environment 680:70–78. doi: 10.1016/j.scitotenv.2019.04.384